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Droplet settling on solids coated with a soft layer
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Gravitational settling of a droplet in air onto a soft substrate is a ubiquitous event relevant
to many natural processes and engineering applications. We study this phenomenon by
developing a three-phase lubrication model of droplet settling onto a solid substrate coated
by a thin soft layer represented by a viscous film, an elastic compressible layer and
an elastic sheet supported by a viscous film. By combining scaling analysis, analytical
methods and numerical simulations we elucidate how the resulting droplet dynamics is
affected by the nature of the soft layer. We show that these soft layers can significantly
affect the droplet shape during gravitational settling. When there is a linear response of
the deformations of the soft layer, the air layer takes longer to drain as compared with the
case of a droplet settling onto a rigid substrate. Our results provide new insight into the
coupled interactions between droplets and solids coated by a thin film of a soft material.
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1. Introduction

Impacts of drops onto solid substrates or liquids are ubiquitous in many natural and
industrial processes. They include inkjet printing, spray coating, forensic analysis, air—sea
transfer and epidemiology of foliar diseases to name but a few examples. The broad
relevance of droplet impact has made it a widely studied topic, for which the effects of
the interfacial and bulk properties of the drop as well as the substrate properties have been
characterized (Rein 1993; Neitzel & Dell’ Aversana 2002; Yarin 2006; Kavehpour 2015;
Josserand & Thoroddsen 2016; Ajaev & Kabov 2021). The drop interface dynamics has
been elucidated through asymptotic analysis, scaling laws and simulations when the impact
speed is very slow (Yiantsios & Davis 1990; Duchemin & Josserand 2020), a situation
we refer to as settling. When the drop approaches the solid it must drain the air layer
separating the two interfaces, which leads to a build-up of pressure in the air film. As a
consequence, the drop interface deforms and takes the shape of a dimple before making
direct contact with the solid. The dimple-shaped interface has a maximum thickness at the
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axis of symmetry of the drop and a minimum near its outer edge where a neck radius can
be defined. The formation of a dimple-shaped interface is not only observed for settling
droplets but also when a bubble slowly approaches a rigid surface (Chan, Klaseboer
& Manica 2011), as well as for inertial drop impacts where it significantly affects the
dynamics (Thoroddsen et al. 2005; Xu, Zhang & Nagel 2005; Mani, Mandre & Brenner
2010; Hendrix et al. 2016).

Drop impacts onto compliant soft substrates (see figure 1) are also common. This
soft substrate can for instance be a viscous liquid film, a soft elastic layer or an elastic
sheet supported by a viscous film. These are the three cases we describe herein. Over
recent years there has been an emerging interest in how soft materials influence capillary
flows (Bico, Reyssat & Roman 2018; Andreotti & Snoeijer 2020). Problems involving
elastohydrodynamic lubrication, also known as soft lubrication (Skotheim & Mahadevan
2005; Essink et al. 2021), are also critical for a wide variety of systems ranging from
stereolithography to biological adhesion (Wang et al. 2017; Chan & Carlson 2019; Wang,
Feng & Frechette 2020). In this context, experiments have demonstrated that the dynamics
of drop impacts can be controlled by the softness of the solid (Pepper, Courbin & Stone
2008; Chen & Li 2010; Chen et al. 2016; Howland et al. 2016; Langley, Castrejon-Pita &
Thoroddsen 2020). The deformations of the substrate can affect the dynamics after contact,
either by absorbing some of its energy or through the contact line motion (Andreotti &
Snoeijer 2020; Dervaux, Roché & Limat 2020). The high lubrication pressure can also
deform the substrate before contact occurs, as recently observed in experiments (Langley
et al. 2020) as well as in numerical and theoretical work (Pegg, Purvis & Korobkin 2018;
Henman, Smith & Tiwari 2021). How the compliance of the substrate affects the air
drainage and dimple formation during settling of droplets has so far been overlooked,
but could produce significant effects for the resulting interfacial flow. Recent experimental
advances (Lo, Liu & Xu 2017; Pack et al. 2017; Lakshman et al. 2021; Zhang et al. 2021)
now also allow us to probe the influence of these surface deformations for drop impacts
on thin liquid films down to the nanoscale.

To describe the settling of a droplet onto a soft surface, represented by a thin compliant
layer, we study a minimal model considering a very viscous flow (very small Reynolds
numbers) and droplets small enough for the interface deformations due to the flow to be
localized near the substrate and to not affect the overall drop shape; this requires a small
Bond number, i.e. capillary effects to dominate over gravity. These assumptions allow us
to describe the settling dynamics based on the lubrication approximation, and we also
consider a regime where deformations of the drop and the interface only appear once the
lubrication assumptions hold. Our analysis builds on the previous works from Yiantsios
& Davis (1990) and Duchemin & Josserand (2020). Yiantsios & Davis (1990) described
the settling of a droplet onto a bath of liquid and derived the long-term asymptotics
of the quantities defining the dimple. They also considered the effects of slip at the
droplet interface by coupling the lubrication equations with boundary integral equations
to account for the flow inside the droplet. More recently, Duchemin & Josserand (2020)
presented numerical simulations and scaling analysis using the lubrication approximation
to rationalize the settling of a large drop onto a thin liquid film, showing how slip at the
film interface can accelerate the settling process. However, the effects of the deformations
of a soft substrate on the settling dynamics of droplets has so far been overlooked. In this
article we consider how the settling dynamics is affected by the deformations of either
a compressible elastic layer, a thin viscous liquid film or an elastic sheet supported by a
viscous film, as outlined in figure 1.
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Figure 1. (a) Schematic of a droplet of radius a*, density pj, viscosity u1, surface tension coefficient oy,
suspended in a fluid at rest (typically air) of density py, viscosity o and settling on a soft material under
the influence of the gravity field —ge.. Deformations are not to scale. The inset shows the definition of the
droplet profile 4} (r*, t*), the profile of the soft material /3 (+*, #*) and the thickness of the air layer H*(r*, 1*) =
hy(r*, %) — h5(r*, t*) between the two. We consider three different soft substrates: (b) a compressible Hookean
solid characterized by its Lamé coefficients G and A; (c¢) a thin viscous film with surface tension coefficient
03; (d) an elastic sheet with thickness ¢*, Young’s modulus E, and Poisson’s ratio v, giving a bending stiffness
B = Ed*? /12(1 — v2). In all cases the height of the undeformed soft layer is 4}, and for (c,d) the liquid film
has a viscosity 3. The dimensional heights denoted by stars ()* are non-dimensionalized with the initial
air layer thickness at r* = 0, H}, whilst the radial coordinate r* is non-dimensionalized with (H(*)a*)l/z. The
dimensional time * is non-dimensionalized with 1§ = 2/ A pga*.

2. Problem set-up and droplet settling onto a rigid substrate
2.1. Lubrication equations

Figure 1(a) illustrates the settling of a droplet towards a solid substrate coated with a
thin soft layer. The initially spherical droplet of radius a*, viscosity wi, density pi,
is suspended in a fluid (typically air) with density p» < p1, viscosity wo and surface
tension coefficient o1. The droplet settles towards the soft surface by gravity, characterized
by the gravitational acceleration g. To describe this interface dynamics, we assume an
axisymmetric flow and start with the lubrication theory derived by Yiantsios & Davis
(1990) for a rigid substrate, before moving on to a description of how the dynamics is
altered when the substrate is coated with a soft layer.

The governing equations describing the flow in the air layer are made dimensionless;
we denote dimensional lengths, times, pressures and velocities with a star ( )*. Since
the droplet is initially spherical and the substrate is undeformed, the air layer thickness
is well approximated by a parabolic profile H*(r*, 0) = Hjj + 2 /2a* near the axis of
symmetry (#* = 0) at time r* = 0. Therefore the characteristic vertical length scale is the
initial thickness of the film at r* = 0, H}, whilst the characteristic radial length scale is

ry = (Hya*) 172 The droplet motion is driven by its weight, giving a characteristic pressure
in the air film pfj = Apga*? /Hg where Ap = p; — pa. The time scale of the process is
15 = m2/Apga*. We assume a small aspect ratio, & = Hjj/ry = (H(‘;/a*)l/2 < 1, as well
as small Reynolds numbers both in the droplet and in the air film. This allows us to take
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advantage of the lubrication approximation, i.e. we neglect any inertial effects and consider
the equations at leading order in ¢. There are also additional assumptions we make in order
to simplify the interfacial boundary conditions. First, we only consider small interfacial
slopes. Second, we consider the no-slip condition for the air film at the substrate and at
the droplet interface. The vertical length scale in the air layer is Hjj whilst it is the same
as the horizontal length scale, r{j, in the droplet. If U3 is the scale of the radial velocity in
the air layer, the continuity of the shear stress at the interface shows that the radial velocity
in the droplet scales as U} = eu2 U3 /1. The continuity of radial velocity at the interface
gives, in dimensionless form, Uju; = Ujuy, which simplifies to uoup = piuy/e. When
the droplet is very viscous, i.e. when wa/u1 < €, we obtain at the interface up — 0. This
approximation becomes inaccurate when the droplet is very close to the substrate, but
since slip at one of the interfaces only changes the prefactor of the governing equations,
the dynamics is expected to be similar regardless. Finally, we assume that the Bond
number is small enough, namely 8§ = Bo/e? <« 1 with Bo = Apga*? /o1, to considerably
simplify the normal stress balance. Considering a typical fluid with a capillary length of
approximately 3 mm, and setting ¢ = 0.1, this last condition amounts to considering a
droplet of radius a* <« 300 pm.

By combining these assumptions we obtain a set of three equations. The link between
the pressure p;(r*, t*) and the thickness H*(r*, t*) of the air layer is given by Reynolds’
thin film equation, derived from the Navier—Stokes equations by considering the classical
assumptions of lubrication theory (Batchelor 1967), 0H* /ot = (1/ 12,u)V*(H*3V*p§),
where V* is the gradient operator. The linearized normal stress balance simplifies to
the Young-Laplace equation and links the pressure p;(r*, "), measured relative to
the undeformed drop, to the drop height h}(r*, *): p; = 01(2/a* — V2h’1*). Finally, a
constraint on the pressure field is given by a quasi-steady force balance on the droplet
obtained by neglecting its inertia: the force from the pressure field balances the weight
of the drop, which gives the integral condition 27 f0+°° pyredre = 4na*3gAp/3. In
dimensionless form, this leads to the following set of equations (Yiantsios & Davis 1990):

M= 21 (e 0?2 (2.1a)
ar U Ty U0 d
10 0y
pp(r,t) =2 — —— | r—(r,1) ), (2.1b)
ror ar
+o0 2
/ pa(r,yrdr = —, (2.1¢)
) 3

where H(r,t) = hi(r,t) — ha(r, t) is the air film thickness and hj(r, f) represents the
droplet interface (figure 1a). As mentioned above, the force balance (2.1¢) neglects the
inertia of the droplet. This model is valid for small approach speeds V*, when V* < H( /1.

This translates to a condition on the Capillary number Ca = 12 V*/o1: Ca < 82, which
also ensures that the droplet is initially spherical.

The system (2.1) must be coupled with a governing equation for the height of the soft
substrate iy (r, t). In § 2.3 we consider a rigid surface with Ay (r, f) = 0; in § 3 we consider
a compressible elastic layer with (3.1); in §4 we consider a thin liquid film with (4.2)
and (4.3); and in § 5 we consider an elastic sheet supported by a thin viscous film with
(5.1). We recall that the heights H(r, t), hi(r, 1), ha(r, t) are scaled with Ha, the radial
coordinate r with rj = (Haa*)l/ 2 the time ¢ with 1y = n2/Apga* and the pressure pa(r, 1)
with p§ = Ap ga*? /H{. Table 1 summarizes the definitions of the dimensionless numbers
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Substrate Description Expression Values
- Aspect ratio &= (H(’;/a*)l/Z <1
1 A *2
— Gravity / Capillarity 5= =28 0.05
e o1
c ible layer (§ 3) Gravity / Elasticit Apgahi 0-0.1
ompressible layer (§ ravi astici =— 0.
P Y Y Y TS HPeG+ )
. . . . 1 Apga*?
Viscous film, capillary (§ 4) Gravity / Capillarity §=— 0.01-0.2
& 03
. . . S 4
Viscous film, capillary (§ 4) Gravity / Capillarity Beap = e 0.004-8
s
Viscous film (§§ 4 and 5) Film thickness hy = h;/Ha 0.1-10
Viscous film (§§ 4 and 5) Film viscosity A= /3 1073-1073
. e . .. Apga*
Viscous film, elastic (§ 5) Gravity / Elasticity o= —5 0-10
. . . . . 8mad 4
Viscous film, elastic (§ 5) Gravity / (Capillarity x Elasticity) Bel = on 107°-1
s

Table 1. Dimensionless numbers characterizing the settling of a droplet on soft layers. We consider a
compressible elastic layer, a viscous liquid film (viscous film, capillary) and an elastic sheet supported by
a viscous film (viscous film, elastic). The last column indicates the range of values used in our numerical
simulations.

characterizing the settling dynamics, along with those relevant for describing settling onto
soft layers.

2.2. Numerical procedure

The systems of equations we study, (2.1) supplemented with equations for h;(r, f), are
solved numerically using the finite element method implemented in the FEniCS code
(Alnas et al. 2015) with quartic polynomial elements and an implicit time integration
procedure. For all cases studied, the initial condition for the air layer thickness is fixed,
presenting an initially small deviation to the spherical droplet following Yiantsios & Davis
(1990): H(r,0) =1+ r2/2 +8(5/18 —In(1 + r2/2)/3). The integral condition (2.1¢) is

implemented as a boundary condition using (2.10): (dhy/or)(r, 1) =28 /3r.

2.3. Droplet settling onto a rigid substrate

For a droplet settling onto a rigid substrate the system (2.1) is closed since ha(r, f) is a
constant, taken here as O without loss of generality, and A (r, t) = H(r, t). A remarkable
feature of the air film dynamics is that the droplet interface evolves into a dimple, a
small region centred around the axis of symmetry where its deformations are localized.
Assuming that the droplet becomes almost flat in this dimple region, the pressure there is
then almost uniform and given by the Laplace pressure of the droplet: p>(r < ry, ) = 2/4.
The force balance (2.1¢) then gives the dimple radius as rg ~ (28/3)'/? (Derjaguin &
Kussakov 1939; Frankel & Mysels 1962). This radius corresponds to the neck of the
dimple where the air layer thickness H(r, t) is minimum. Outside the dimple, for r > ry,
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Figure 2. Results from a simulation of (2.1) for droplet settling on a rigid substrate, with § = 0.05. (a) Droplet
profile at £ = 50, 150, 400, 1000 and 20 000 in the dimple. The expected dimple radius is ry = (28/3)/? ~
0.18. (b) Evolution of the height at the axis of symmetry, H(0, 7), and of the minimum height, H,;, (7).
(c) Profiles of the pressure in the air layer at = 10, 100, 1000 and 10000. The dotted profile represents a
uniform pressure 2/ over a region of size r,. The inset shows the time evolution of the pressure at r = 0, with
the dotted lined representing the asymptotic value 2/3.

the droplet is nearly undeformed and spherical. The dimple geometry is illustrated by
numerical simulations of (2.1) in figure 2(a).

Further insight into the interfacial dynamics may be gained through scaling analysis
(Duchemin & Josserand 2020). Following the above discussion we assume a dimple profile
to be formed with r; ~ 8!/2 and a uniform pressure po(r < ryq,t) ~ 8 -1 Integrating (2.1a)
then gives a mass balance as

oH op2
rf,E(o, 1) ~ rqH; (== (ra, 1), (2.2)

min

where the gradient of pressure (0p2/dr)(rg,t) ~ p2/L(t) ~ 1/8£(t) is localized within
the radial extent of the dimple neck ¢(f), and the minimum thickness is H,i,(t) =
H(rg, t). Matching the curvature of the neck with the curvature of the undeformed
droplet yields H,i, (1) /E(t)2 ~ 1, whilst the slope is matched between the dimple and
the neck: H,,;,(t)/€(t) ~ H(O, t)/ry. These two matching conditions simplify (2.2) to
(dH/d1)(0, t) ~ §*H(0, t)°, which finally allows us to find the following scaling laws:
H(O, 1) ~ 8t~ Y4 Hypin(t) ~ 8t~ Y2, 0(t) ~ §/2¢ /4. A more rigorous mathematical
analysis has also been conducted by Yiantsios & Davis (1990), who derived and validated
numerically the following long-time behaviours from an asymptotic expansion of the
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governing equations (2.1)
H(0, 1) = (0.3273)8t /4, (2.3a)
Hpin(1) = (0.4897)81/2, (2.3b)

where r; approaches a constant value as (28/3)!/2(1 — 0.1652¢~1/4). These asymptotic
results are in very close agreement with the numerical simulations of (2.1) as shown
in figure 2. In the next sections we describe how this physical picture changes when
considering the settling of a droplet onto soft surfaces.

3. Solid substrate coated with a thin compressible elastic layer

We move on to describe the case when the rigid substrate is coated with a thin and
compressible elastic layer (figure 1b). At rest, the layer has uniform thickness A7, such that
ha(r, 0) = ha(r — o0, 1) = h} /Hy = hy. The response of the layer is assumed to follow
Winkler’s model (Dillard et al. 2018; Chandler & Vella 2020), i.e. h5(r*, 1*) = hy —
n*p5(r*, ), with n* a proportionality constant relating the displacement to the external
pressure acting on the layer. Winkler’s model can be formally derived for compressible
Hookean layers using lubrication theory, in which case n* = h;/(2G + 1) with G and
A the Lamé coefficients of the elastic material, assumed to be of the same order of
magnitude. Such a simple relationship is obtained in the limit ¢ < 1, ehy < 1, as shear
stresses are negligible and only the pressure contributes to deformations (Skotheim &
Mahadevan 2005; Chandler & Vella 2020). Winkler’s model can also be used to describe
thin liquid-infused poroelastic layers (Skotheim & Mahadevan 2005) as well as soft
polymer brushes (Gopinath & Mahadevan 2011; Davies et al. 2018). In dimensionless
form, the relation between the pressure and displacement becomes

ha(r, 1) = hg — np2(r, 1), (.la)

A *2 *
L (3.1b)
HE2(2G + A)

The dimensionless number 7 is a softness parameter measuring the relative importance
of the pressure exerted by the drop on the compressible layer compared with its Lamé
coefficients, and which controls the importance of the layer deformations compared with
its thickness (Skotheim & Mahadevan 2005). As n — 0, i.e. as the layer becomes very
stiff, we recover hy(r, t) = hy, a constant, and the results for a rigid solid presented in
§ 2.3 apply.

To illustrate the effect of a soft layer on the droplet settling dynamics, we perform
numerical simulations of (2.1) and (3.1). When the layer is stiff compared with the droplet,
i.e. when 7 is sufficiently small, we expect the droplet settling dynamics to approach the
analytical solution for a rigid wall (2.3). Figure 3 also shows that when 5 is large, the
droplet profile hj(r, f) becomes nearly undeformed while the elastic layer h;(r, t) also
adopts the parabolic shape of the droplet. Accordingly, we start the analysis in the limit of
a very soft compressible layer by assuming the following ansatz:

m—@mn:%@—ﬂy (3.2)

valid up to a radius 7., and an undeformed elastic layer i, (r, t) = h, for r > r,. From (3.1),
the corresponding pressure at the axis of symmetry is np2(0, 1) = rg /2. The force balance
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Figure 3. Profiles of the droplet, &1 (r, ), and of the compressible elastic layer /2 (r, t), at = 1000 and with
§=0.05and (a) n = 1072, (b) n = 103, The initial height of the elastic layer, &y, is only significant in the
definition of n (3.1b) and ha(r, 1) is translated in the figures so that it is O in its undeformed state.

(2.1¢), limiting the integration to 0 < r < r,, gives: rj — 4np> (0, t)rg + 1617/3 = 0. These
two relations yield

1/4
o — (?n) , (33a)

3 \~1/2
p2(r=0,1 = (Zn) . (3.3b)

To arrive at these results we have assumed that the droplet maintains its spherical shape
and that the elastic layer follows a similar profile with the same curvature as the droplet.
This means that the thickness of the air film is uniform: H(r, t) >~ H(¢t) for r < r,. The
evolution equation (2.1a), with the parabolic pressure profile given by (3.1), (3.2) and
(3.3) as pa(r, 1) = 2//3n — r*/2n, then yields for £ > n~ ' and r < r,

P\ 12
H(r,t) = (%) . (3.4)

To find the range of applicability of the above results we can integrate (2.15), which we
have not yet used, with the pressure profile derived herein

r 1 s 16,
hi(r,t) = h1(0, 1) + E (1 — 77) + —=-—r. 3.5

The analysis is consistent only if the corrections to the ansatz (3.2) are small, i.e. when
hi(r, 1) ~ h1(0, ) 4+ r*/2, which requires 1 > §2. Cancelling the quartic term up to r =
re = (161/3)'/% reduces to 8 < 1, consistent with our assumptions discussed in § 2.1.

In order to verify these predictions, we show in figure 4 the time evolution of the air film
thickness at r = 0, of the minimum air film thickness, of the pressure in the air film and of
the radial position of the neck. These numerical results confirm the asymptotic behaviour

derived herein as well as their application range, n > 82, while the effects of elasticity
are negligible when 1 < 82. In particular, the minimum height of the air film scales as
H i (1) ~ t'/2 with a prefactor always larger than for a rigid wall. This suggests that a soft
enough material would delay direct contact between the droplet and the solid.

To place these results in the context of relevant material parameters, we consider a
rescaled Bond number § = O(10~"), an aspect ratio ¢ = O(10~!), a liquid—gas density
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Figure 4. Air layer dynamics during a droplet settling onto a thin compressible elastic layer. (a,b) Time
evolution of the air layer thickness H at r =0 (a) and at its minimum value (b), for § = 0.05 and n =
1077,1075,1073, 10!, (¢) Radius of the neck, rpeck(f) = argmin, [H(r, 1)] at t = 103. (d) Pressure profile
in the air layer at 7 = 103. Solid lines represent the numerical results, the dotted line are the profiles
pa(r, ) = 2//37 — r2/2n derived in the text assuming the dynamics is dominated by the elasticity of the
compressible layer. The inset shows the pressure at = 0 and at the same time for various values of 7.

difference Ap = 0(10° kg m~?), a surface tension coefficient oy = O(50 mN m~') and a
compressible layer thickness 4§ ~ H{. The condition n > 82 translates into the following
condition for the material properties of the soft layer for compressibility effects to be
dominant: (2G + 1) < 10* Pa. Consequently, the analysis is primarily reserved for very
soft materials, for instance substrates grafted by a layer of polymer brushes which can
verify this criterion (Davies et al. 2018) and for which the Winkler mode applies (Gopinath
& Mahadevan 2011).

4. Solid substrate coated with a thin viscous liquid film

Next we consider a droplet settling on a rigid substrate coated with a thin viscous liquid
film (figure 1¢) of viscosity u3 = u/A and surface tension coefficient 3. We continue to
consider no slip of air at the droplet interface, as discussed in § 2. At the interface between
the air layer and the liquid film we consider the continuity of radial velocity, u5 = u3, as
well as the shear stress balance, u2du3/9z* = ,u38u§/ 0z*, where u3 and ug are the radial
velocities in the air and liquid layer, respectively. There is also no slip at the base of the
liquid film. With these boundary conditions and using the lubrication approximations, the
Navier—Stokes and mass conservation equations written in both layers yield the following
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coupled equations for the air film thickness H(r, t) and the liquid film height A, (r, 1)

oH 1 1 a r 4 ap2
—(rn= H (r,t)——(r, 1)
ot 127rar H(r,t) + /lhz(r 1) or

+ 4AH3(r, o (r, z) (r 1) + 3AH?(r, O3 (r, z) (r z))} (4.1a)

8h2 A1 9 r O
S =375 [H(r B + Aha(r. 1) ( (r D (r, t) (r 2
+ h4(r z) ( N+ H2(r Hh3(r, t) (r z))] (4.1b)

Equation (4.1a) replaces (2.1a), which was derived assuming no slip of air at the interface
with the soft substrate, whilst the force balance (2.1¢) and normal stress balance at the
air—drop interface (2.10) remain unaltered. The pressure p3(r, f) in the viscous film is
given by the normal stress balance at the interface between the air layer and the viscous
film

10 [ oh
E(p3(r,0) =p2(r, 1) = ——— < —— t)) (4.2)
ror ar
where £ = e 2Apga*? /o3 is a rescaled Bond number defined similarly to §, & = do1/03.
At t = 0 and far from the droplet, the height of the layer is 42 (r, 0) = ho(r — 00, t) = h;.
For the most common liquids, e.g. aqueous substances and common oils, we expect that
surface tension coefficients remain in the same range, and hence that & and & have the
same order of magnitude. We set § = 0.05 for the numerical results presented below and
vary & from 0.01 to 0.2.

We focus on cases where the viscosity ratio 4 = uy/u3 < 1, i.e. we consider the liquid
film to be very viscous as compared with the air layer. In the limit 4 — O the no-slip
boundary condition effectively applies in the air layer at the interface with the liquid film,
and (4.1a) simplifies to (2.1a). In the liquid layer, we expect the terms in (4.15) proportional
to A2 and to (dp2/dr)(r, 1) to be subdominant: they are the terms appearing from the shear
stress imposed by the air layer, which should be negligible for a small viscosity ratio A.
Neglecting them is equivalent to considering free slip in the liquid layer at the air-liquid
interface. By making these assumptions, (2.1) continues to hold and the evolution equation
of the viscous film height (4.1b) simplifies to

8h2 A1 0 ap3
( = 5;8_< h3 (r, 1) r(r,f))- (4.3)

We discuss next what can be learned from analysing these simplified equations at small A
for the air layer profile and deformation of the liquid film. We will also verify in §4.4
and Appendix B that neglecting the terms that are O(4) in (4.1a) and those that are

013 dp2/0r) in (4.1b), i.e. considering no slip of air and free slip of liquid at the air-film
interface, is justified for 4 < 1.

4.1. Behaviour of the air layer

In the limit of very viscous films A < 1, insight into the behaviour of the air layer thickness
H(r, t) can be gained since the expression of the pressures pa(r, f) in the air layer (2.10)
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and p3(r, 1) in the liquid film (4.2) are similar. Indeed, subtracting (4.2) from (2.10) yields

190 ([ oH
(6 +8)pa(r, 1) = &p3(r, ) =2 — —— (r—(r, t)) . 4.4

ror \  or
Assuming &Ep3(r, t) K (8 + &)pa(r, 1), the system (2.1a), (4.4) and (2.1¢) for the air layer
thickness H(r, t) is closed and can be solved similarly to (2.1). The discussion of § 2 for the
deposition on a rigid wall can then also be applied here, except that § now becomes § + &
to account for the liquid film. In particular the dimple radius approaches (2(8 + £)/3)!/2,
the pressure in the dimple approaches 2/(6 + &), and the results given by (2.3) for the
height at the axis of symmetry and minimum height apply as well (with § — & + &). This
was recognized by Yiantsios & Davis (1990) for the deposition of a droplet on a bath of
its own fluid (¢ = §), neglecting any influence of the pressure in the bath (p3 implicitly
assumed to be zero), and was also used to study the approach of a droplet towards another

droplet (Yiantsios & Davis 1991).

4.2. Response of a thin viscous film under constant load

Before describing the full problem we consider a simplified, generic, situation where
the thin fluid film is exposed to an external load p, and with no external shear stresses.
To account for this situation we change the non-dimensional units to scale (4.2) and
(4.3) using ¢ = e, hy = ho(%, Dhs, V. = V /X, pe = Pe(X, H)pe; With p, the characteristic
magnitude of the load which is distributed over a characteristic length x., i the initial
height of the liquid layer, and 7. = 3£x?/Ah} the characteristic time. We temporarily use
Cartesian coordinates and denote by X the spatial variable. Using these scalings, we obtain
the following dimensionless equation for the liquid film height:

aljlz
a1
The parameter B.qp = pcxgé /hs represents the ratio of the characteristic pressure force
to the characteristic capillary force. We consider a long and initially flat viscous film,
hy(x,0) = 1, exposed to a load uniform in time: p.(x, ) = p.(X)H(7) where H is the
Heaviside function. By assuming small deformations, we can derive the film height

profile analytically by adapting a procedure recently used to study flows induced in glassy
polymer films (Pedersen ef al. 2021a). Indeed, as long as the film deformations are small,

(4.5) can be linearized defining é(&, 7) such that i (%,7) = 1 — Beapé (X, 7). By assuming
| Beap€ (X, )| < 1 and neglecting terms that are O((Beqpé (X, 1))2), we obtain from (4.5) the
following linear equation:

&, =V BEDV(=V D) + Beaphe®, D). (4.5)

0 AaN an A Aa a A
(E + V4> ex, D) = —V2he (. D). (4.6)
The associated Green’s function is
H()
2n)? Jre

and the solution of (4.6) for an arbitrary load p,(x) is given by

Geap(%.1) = o I ik g 4.7)

i
ex D = —/szo Geapk — x/;1 = 1)V2p(x') df' dX'. (4.8)
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When the load is a Dirac delta function, p.(X) = 8pjrac(X), this simplifies to
1
ex ) =— / V2Gegp(R; 1) dr. (4.9)
0

For a confined uniform load, p.(x) = 1/m if ||x|| < 1, the solution (4.8) becomes

. 1 (.
Ex, D) = —;/ /CVGwp(fc—x';t’)-ndﬁ/dt/, (4.10)
0

where n is the outward normal to C = {x, ||x|| = 1}.

It is tempting to try to compute the solution for a Dirac load (4.9): this generally
gives the self-similar intermediate asymptotic solution (Barenblatt 1996) towards which
solutions to any confined load would converge, similarly to the levelling scenario
(Benzaquen, Salez & Raphaél 2013; Benzaquen et al. 2014) where an initial deformation
is allowed to relax. However, the calculations show a singularity in time that cannot
be integrated, which suggests that (4.6) does not possess a self-similar universal
attractor. Instead we compute the response to a confined uniform load, which is relevant
for the droplet settling case. By using (4.7) and writing spatial variables in polar
coordinates, in particular letting X = (¥cos6, 7'sinf), and after using the identities
[ exp(ik cos ) d = 27tJo(k), [ cos() exp(—ik cos 0) d = —2imJ (k) where J, is
the Bessel function of the first kind of order n, (4.10) simplifies to the following Hankel
transform:

A 21/4 —ut

non A ro. A oo u\l—e
et =1 (51). vOd=" | o () o de @lab)

As expected, this does not converge towards a self-similar solution as illustrated in
figure 5(a,b). This is a peculiar property of this problem and is at odds with the levelling
scenario mentioned above and with the elastohydrodynamic case discussed in the next
section. In particular, this means that the long-term behaviour of the interface not only
depends on the total weight applied on it but also on its specific distribution.

In the droplet settling dynamics, we are particularly interested in what happens at the
axis of symmetry. The integral in (4.11a,b) admits a closed form expression at 7 =0
in terms of hypergeometric functions, shown in Appendix A, from which the following

asymptotic expansion as 7 — oo can be found:

. In@ . 2-3 41n(2
(0,7 = % Tk OGEV?, k= V”é: " .11, (4.12a)
h2(0,7) = 1 — Begph — ﬁg‘j‘f In(?), (4.12b)

with ., =~ 0.577 the Euler—Mascheroni constant. It is also interesting to look at the
capillary pressure at the axis of symmetry, -V24(0, 7), which in the linear approximation
is given by p(0,7) = —BeapV2é(0, ). By using (4.11a,b), we can find that the asymptotic
expansion of this quantity as  — oo is

PP Beap ) Al
0.7) = —= . 4.13
p(0,1) 8ﬁt + 0@ ) ( )

In this linear and asymptotic approximation, the time to reach (0,0 =01is T =
87/ Peap=h) ~ (0.048 e37/Pear . We therefore expect (4.12) to be valid up to 7 ~ 7, after
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Figure 5. (a) Deformation profiles of a viscous film under an external load for 7 = 10!, 10, 10> and 107 in the
linear limit, using an initially flat profile and a confined uniform load defined numerically as p.(7) = po(l +
erfe(1 — 7)]) with ¢ = 50, erf the error function, py chosen such that [ 27p,(?)7dF = 1. (b,c) Evolution at
the axis of symmetry (7 = 0) of the (b) height and (c) pressure from simulations of the nonlinear evolution
equation (4.5).

which nonlinear effects become important and prevent this singularity. We also expect
that for this asymptotic linear solution to have enough time to develop before nonlinear
effects appear we need an upper bound on B, i.e. a weak enough load.

We verify the results from this minimal model by comparing them against simulations
of the nonlinear evolution equation (4.5) in figure 5(b,c). We indeed observe that the
linear approximation (4.6) and expansions (4.12) and (4.13) are accurate up to 7 2~ 7 when
Beap S 1.5, while for larger values of B, the asymptotic regime is not reached before
nonlinearities appear. We note that the fact that € (0, r) does not evolve as a power law is
consistent with the lack of self-similarity of the solution. Yet, the asymptotic pressure
evolution (4.13) is nevertheless scale invariant and universal. We hypothesize that the
logarithmic evolution given by (4.12), €(0,7) ~ In(#)/8 + k, is also universal but that
the prefactor £ depends on the functional form of the load. We verified this numerically
for a few other loads, but these are not presented here.

4.3. Response of a viscous film to a settling droplet

We now come back to the complete droplet settling case, where we anticipated from the
discussion of § 4.1 that the dimple radius evolves towards a constant, (2(6 + £)/3) 172 and
that the pressure in the dimple is also constant, equal to 2/(5 4+ &). Assuming that this
is indeed the case, we expect the results derived in § 4.2 to apply in the case of droplet
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settling as well. Accordingly, we define r. = (2(§ + &) /3)1/ 2 and pe =21/(S + &); this
gives t. = 4£(6 + 5)2/3h51, Beap = 47& /3h, and the rescaled height izz(?, 7) is governed
by (4.5) where the external pressure p, is now that in the air layer, p, (7, 7).

We first need to verify that (4.4) applies, i.e. that &Eps(r,1) < (8§ + &)pa(r, t).
Assuming Bqy < 1 for an asymptotic regime to be reached and 7 < 7 =~ 0.05 eS8/ Beap e,
t SO.1E(8 4+ £)%h;347 1 e%5/5 for the deformations of the liquid film interface to remain
small, the full film profile can be derived as shown in § 4.2. In particular, (4.13) gives the
pressure at » = 0 in the liquid film as

e by (1T E 8\
nO0 =g mee (,> =520 (m) ‘ (19

In this regime (Beqp S 1,7 S T), we therefore expect the pressure in the liquid to
continuously decrease and the condition £p3(r, 1) <K (§ + &)pa(r, t) will eventually be
satisfied: this justifies a posteriori the discussion of § 4.1 and the scaling we have chosen
for r. and p.. We can now expect from (4.11a,b) and (4.12) that the sheet profile iy (r, 1)
evolves according to

hy(r, 1) P\ _4ne r 34 4150)
o J"“’”(?l/‘*’)_3hs’”<<h24r>1/4’4s<6+s>2)’ (15

m(0,1) In(t/1) & h;a

1

4.4. Numerical results

In figure 6 we show the time evolution of the pressure in the liquid film and its height
from numerical solutions of the complete nonlinear equations, i.e. considering the normal
stress balances (2.10) and (4.13), the force balance (2.1¢) and the governing equations (4.1)

accounting for the full shear stress balance. We present numerical results for 1 = 1075,
The results are in close agreement with the theoretical expectations (4.14) and (4.15) for
B < 1, a condition required for the asymptotic regime to be reached. We also show in
Appendix B that 1 = 107> is small enough for (2.1a) and (4.3) to apply, i.e. to consider
free slip in the liquid film and no slip in the air layer at the interface between the two.
Indeed, figures 12 and 13 show that considering the full viscous stress balance through
(4.1) is equivalent to solving the simplified system considering the no-slip and free-slip
conditions.

The results presented in figure 7 for the air layer dynamics show that the discussion of
§ 4.1 indeed applies. The long-term asymptotics of the air film thickness H(r, f) is similar
to that of the solid case, with § — § + £. We note that the air layer thickness profile has
a dimple structure while both the droplet and the liquid film profiles are monotonically
increasing near the axis of symmetry and that the neck of the dimple is located at the
inflection point of the film profile. As discussed by Duchemin & Josserand (2020) when a
droplet settles on a solid surface, we expect that this neck approaches a self-similar form,
H(r,t) = Hpin()F((r — rq(2))/€(t)), where F is linear for r < ry and quadratic for r > ry,
and where £(¢) is the radial extent of the neck region. This is verified in figure 7(b), where
we used £(1) = (8 + &)1/2¢~1/4 following the scaling analysis presented in § 2.3.

When the deformations of the liquid film become large, the pressure p3(r, f) increases
and can no longer be neglected in (4.4). This leads the air layer into another regime.
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Figure 6. Height evolution of the coated liquid film for a droplet settling with § = 0.05. Pressure (a) and
deformation (b) of the liquid film at the axis of symmetry (r = 0) for § = 0.05, 1 = 1073 with iy = 0.1, &=
0.2,0.05,0.01 and hy = 1, & = 0.2, corresponding to f = 8.4, 2.1, 0.4 and 0.8, respectively. (¢) Normalized
deformation of coated the liquid film shown here for 4 = 1075, hy = 0.1, & = 0.2, corresponding to B = 0.8,
and at times ¢ = 107, 103, 10* and 10°.

For Beqp S 1, the time at which deformations become large can be estimated from § 4.2
as T ~ 0.0519 e3™/Peap ~ 0.1€(6 + E)zhs_3/l_1 e%s/8  The effect of large deformations on
the liquid film evolution can be seen in figure 6(a,b) for the case Beqp = 8.3 at time
t > 10*. As shown in figure 7(c), the resulting effect on the air film is characterized by
a sudden decrease of its thickness at the axis of symmetry. In fact, figure 8(a) shows
that when nonlinearities of the liquid film are present the profile evolves towards a more
complicated shape presenting a local maximum not located at the axis of symmetry and
a minimum not located at the neck. The pressure profile in the air, shown in figure 8(b),
also significantly deviates from the near-uniform pressure characteristic of the classical
dimple (figure 2¢), and the assumption (§ + &)pa(r, t) > Ep3(r, 1) is no longer valid. Such
a shape of the film is not uncommon in thin film drainage and has been observed, both
experimentally and numerically, for droplets and bubbles approaching a rigid substrate
(Clasohm et al. 2005; Ajaev, Tsekov & Vinogradova 2007, 2008), and has been referred
to as rippled deformation, or as a wimple (Chan et al. 2011). This wimple occurs due to
a competition of two effects in the lubrication pressure: the capillary-driven deformations
of the drop/bubble, along with an additional physical effect. In prior work this additional
effect originated from surface forces, such as van der Waals interaction or electrostatic
effects. Here, we do not consider such effects, but it is the nonlinear deformations of the
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Figure 7. Evolution of the air layer for the settling of a droplet with § = 0.05 on a viscous liquid film.
(a) Profiles for £ =02, hy =1,1= 1075 of the droplet hy(r, t) and the liquid film A (r, ¢) at ¢ = 5000.
(b) Air film profile H(r,t) = h|(r,t) — ha(r, 1) for € = 0.05, hy = 1,4 =107 at r = 50, 102, 10?, 10* and
105. The neck is predicted to be located at r = (2(8 + éE)/3)1/2 ~ (.26. The inset shows the rescaled neck
structure near r = rg(f) with £(r) = (8 + &)/2rV/*. (¢, d) Thickness of the air film at » = 0 (¢) and at its
minimum (d) for § = 0.05, 1 = 10~5 with hy =0.1,& =0.2,0.05,0.01 and hy = 1, & = 0.2, corresponding
0 Beap = 8.4, 2.1, 0.4 and 0.8, respectively.

liquid film towards which the droplet settles that lead to a wimple. Such a rippled shape
also seems to develop in the numerical simulations of Duchemin & Josserand (2020)
during the late stage of a large drop settling on a liquid film. The results we presented
above are valid before the appearance of a wimple; an understanding of this shape and
the associated drainage dynamic would be an important step towards an understanding of
droplet settling when the parameter B.,, = 41§ /3hs becomes large, i.e. on very thin films.

5. Solid substrate coated with a thin viscous film and an elastic sheet on top

We now consider the case where the interface of the thin viscous film is substituted by an
elastic sheet (figure 1d). We neglect any tension in the sheet and only consider its bending,
an assumption valid when the deformation of the sheet remains small compared with its
thickness (Landau & Lifshitz 1959; Tulchinsky & Gat 2016). This means that the effect
of the viscous shear stress by the air layer on the elastic sheet is very small compared
with the normal stress pressure exerts on it. However, when the deformation becomes of
the same order as the thickness of the sheet, tension in the sheet should be taken into
account. This can be done using a nonlinear plate model such as the Féppl-von Kdrmén
equations (Landau & Lifshitz 1959). Here, we consider that we are always in the case
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Figure 8. (a) Interface profile of the air layer thickness for a droplet settling on a viscous liquid film at = 500,
10* and 10, for £ = 0.2, hy = 0.1, 2 = 1073, (b) Corresponding pressure profiles in the air layer (p») and
in the liquid film (p3) at = 10°. (¢) Interface profile of the air layer thickness for a droplet settling on an
elastic sheet supported by a thin viscous layer at = 10 000, 20 000 and 40 000, foro = 10, hy = 1,4 = 1073,
(d) Corresponding pressure profiles in the air layer (p2) and in the viscous film (p3) at r = 40 000.

when deformations are small compared with the thickness of the elastic sheet. This leads
to a thin film equation for A;(r, ¢) similar to (2.1a) and (4.3), where the pressure enters
the equation as p3(r*, ) = p; + BV*4h§(r*, 1*). The operator V4(-) = V2(V?2(.)) is the
bi-Laplacian and B = Ed*3/12(1 — v?) is the bending stiffness of the sheet, with d*, E
and v its thickness, Young’s modulus and Poisson ratio, respectively. Using the scaling
defined in § 2, the non-dimensional governing equation for the height of the film reads

o AL (s
W(r, tH = 27 or <rh2(r, 1) o7 (r, t)) , (5.1a)
a(p3(r,t) — pa(r, 1)) = Vi (r, 1), (5.1b)

with 4 = ua/u3, n3 the viscosity of the fluid supporting the elastic sheet. The effect
of bending is quantified by the parameter o = Apga**/B = (a*/£;)4, analogous to an
elastic Bond number, which compares the droplet radius with the elastogravity length
5 = (B/gAp)'/*. Atthe initial time 7 = 0 and far from the droplet, the height of the sheet
is ho(r,0) = ha(r — 00,1) = hs. We set § = 0.05 for the numerical results presented
below.

We note that for a typical density ratio between gas and liquids Ap = 10° kg m~3, and
considering very soft elastic sheets, e.g. v >~ 0.5, FE = 0(10° Pa), d = O(100 nm), Ly is
approximately 50 pwm, which is also the typical upper bound we expect for droplet size in
order for the lubrication scalings presented in § 2.1 to be valid. We are therefore mostly
interested in the cases where o < 1.
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5.1. Response of an elastic sheet supported by a viscous film under constant load

We start by looking at the general case of an external load p,(x) exerted over an elastic
sheet supported by a thin viscous film, before coming back to the complete droplet settling
situation. The rescaled governing equation of the sheet height for a load p,(x) reads

8h2 - »
( D=V-WBERHVV G D+ Bape())), (5.2)

witht = #t., hy = izz (*, Dh;, V=V /Xc, Pe = Pe(X)pe; With p. the characteristic magnitude
of the load which is distributed over a characteristic length x., i, the initial height of the
elastic sheet, and 7, = 12ax? / h?ﬂ the characteristic time. The parameter B, = Otxﬁpc /hy
characterizes the ratio of the force due to the applied pressure to the characteristic bending
force. For small deformations of the elastic sheet, (5.2) can be linearized by defining
(%, 1) such that iy (%,7) = 1 — Bé(X, 1) and considering |B.é (%, 7)| < 1. This leads to
the following equation when neglecting terms that are O((8,;€ (x, 1))?) in (5.2):

0 6\ 2/~ _
(a—t -V )6( B =—Vp(R). (5.3)

We can then derive analytically the film height profile in a similar manner as in the work
of Tulchinsky & Gat (2016), who studied the response of elastic sheets in the context of
impact mitigation. Indeed, the Green’s function of (5.3) is

.~  HG Y ik
Gel(&, t) = (2]—([))2 , e*‘k‘6t elk-x dk, (54)
R

and the solutions to a Dirac load and to a confined uniform load are given by (4.9) and
(4.10), respectively, provided G,; be replaced with G4,. The solution to a Dirac load,
De(X) = Spirac(X), exists and simplifies to the following Hankel transform:

6

7 1 [T ] —e¥
e =1 2 P(y) = —/ Jo(uy) ———— du, (5.5a,b)
/6 271 0 u’
where 7 = || x||. At the axis of symmetry 7 = 0 this gives
N I'(2/3).
0,7 = ﬂtlﬂ, (5.6a)
47
. N3 4t 3
hO,H)=1—-|— , T=——77-1, (5.6b)
T I'(2/3)Bei

with T ~ 799/ ,331 the characteristic time scale of the process and I” Euler’s gamma
function (I"(1/3) ~ 2.68, I"(2/3) ~ 1.35). The bending pressure p(#, 7) = B V*é(F, 1) at
the axis of symmetry is given by

(1/3” 173, (5.7)

p0,7) = Bor—7——

The self-similar solution (5.5a.,b) is only valid when the load is a Dirac distribution.
However, it can be expected that it is also an intermediate asymptotic solution
(Barenblatt 1996) towards which solutions to other loads converge. We verify this in
figure 9(a) for a uniform and confined load: p.(r < 1) = 1/% and p.(7 > 1) = 0. This
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Figure 9. Deformation profile of an elastic sheet supported by viscous fluid and exposed to an external
load. (a) Solution of the linear evolution equation (5.3) in cylindrical coordinates for (right panel) a narrow
load approaching a Dirac distribution, p,(#) = po exp[—(#/a)?]/7 with a = 1/200 and (left panel) a confined
uniform load, p.(¥) = po(1 + erfla(l — 7)]) with a = 50, erf the error function. In both cases pg is chosen
such that /]R+ 27tp. (77 dr = 1. The rescaled solution converges to the self-similar solution (5.5a,b), and faster
for the narrow load (right) than for the distributed one (left). (») Evolution of the deformation at the axis of
symmetry (7 = 0) from the nonlinear evolution equation (5.2) and for a confined uniform load.

is a property also present for the levelling scenario for elastic (Pedersen, Salez & Carlson
2021b) and capillary (Benzaquen et al. 2013, 2014) interfaces, including polymer melts
(McGraw et al. 2013), when an initial local deformation is allowed to relax, as well as
for gravity currents (Ball & Huppert 2019) governed by a similar equation. However,
under load and contrary to the aforementioned cases, the deformation grows with time
and the linear approximation always eventually breaks down so that (5.5a,b) is only valid
in a hypothetical intermediate regime. In figure 9(b) we show by solving numerically
the nonlinear equation (5.2) in the case of a confined uniform load that the self-similar
regime is indeed reached for B,; < 1. The solution to the linear equation predicts that the
height at the axis of symmetry becomes zero in finite time: this singularity is prevented by
nonlinear effects that become significant from time 7 ~ 7/10. For larger loads, B,; > 1, the
asymptotic self-similar regime does not have enough time to be reached before nonlinear
effects appear.

5.2. Response of an elastic sheet to a settling droplet

We return to the case of a settling droplet where the weight of the droplet acts on the
sheet, set by (2.1¢), so that we can expect to be able to characterize its self-similar
asymptotic response without a priori knowledge of the structure of the air layer. We
let r. = (28/3)1/ 2 and pe = 21/6, the values obtained in the rigid case. Then B, =
8mad/9hy, t. = 32a8> /9h§/l, and the rescaled height (7, 1) is governed by (5.2), with
p2(7,1) in lieu of p,(r). For B, <1 the sheet reaches a self-similar evolution, until
nonlinear effects appear at time 7 =~ 800/ /831 ~ 37(hs/058)3, when 5h(0, 1) < hg. For
Ber 2 1, the sheet does not enter the self-similar regime before nonlinear effects play a
role.

For B, <1 and r < 1.7, we then expect from (5.5a,b) and (5.6) the following
self-similar evolution of the elastic sheet:

hy — ha(r, 1) 7 r 120716
ALY (L DY SRR el N 5.8
By — 0,0 ? (;1/6) o\ 7 [hgz} (>-8a)
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Figure 10. Deformations of an elastic sheet supported by a viscous layer for a droplet settling with § = 0.05.
(a) Normalized deformation of the elastic sheet, shown here for 1 = 1073, hy = 10, and (left panel) o =1,
(right panel) « = 10. (b) Deformation of the elastic sheet at the axis of symmetry (r = 0) for 2 = 10~ and
various values of o and Ay, leading to different values of B,;.

A\ 1/3
h(0, 1) t t \1/3
11— == ~0.2 — , 5.8b
s (r) “(22) 80)
while the pressure in the viscous film beneath the sheet at » = 0 is found from (5.7)
r(1/3) Bahs {1\ a \'?
0,f) = —— — ~0.68( — . 5.9
r3O-0 = e ARt ©9)

Figure 10 shows that, if B,; < 1 to ensure that the self-similar dynamics is reached, and for
t ST 13024~ 2 to ensure that deformations remain small, (5.8) can be verified. The
results also show a third necessary condition, « < 1, which is linked to the breakdown of
the assumption of a localized load that we discuss next.

5.3. Numerical results

In figure 11 we show the evolution of the air layer thickness for a droplet with § = 0.05
from numerical simulations of (2.1) and (5.1). For « < 1, i.e. for droplets smaller than the
elastogravity length, we observe the same behaviour of the air layer as in the solid case
discussed in § 2.3. This gives a criterion for when elasticity effects can be neglected in the
droplet settling process. In this scenario, we derived analytically and verified above the
self-similar response of the elastic sheet.

For @ 2 1, we observe a significant deviation in the dynamics of the air layer as shown
in figure 11(a—e). It continues to present a dimple, but the height at the axis of symmetry
saturates and evolves towards a constant value. The minimum height, at the neck, continues
to decrease while remaining larger than for the rigid case. Contrary to the rigid case, the
radius of the neck of the dimple also monotonically increases with time. We note that this
dimple is present while both the droplet and the sheet heights are increasing near the axis
of symmetry, and its neck is approximately located at the inflection point of the second
spatial derivative of h;. Contrary to the case of a rigid solid coated by a thin viscous
film, without an elastic sheet atop, this new behaviour not only depends on the property
of the sheet characterized by «, but also on the properties on the supporting viscous film
height and viscosity through A and A as show in figure 11(f —h). Namely, the thickness
and dimple radius increase with increasing initial height and decreasing viscosity.

934 A25-20


https://doi.org/10.1017/jfm.2021.1112

https://doi.org/10.1017/jfm.2021.1112 Published online by Cambridge University Press

Droplet settling on solids coated with a soft layer

@ 1 00 ®) 4,010
Droplet
- 0.008
im 093 hy(r, 1) < 0.006
~
- SN
= 0.90 T 0.004
é .
< 0.002
0.85 Viscous film
"0 02 04 06 08 10 0 }
r r
(©) g0 — oy @ 00—
= | . \— . = : \
o" 10—2 | 0{\ \II \_é 10—2 - "
MRS
104 1, DURRRTY " P
| ‘ i P
100 100 103 108 107! 10
t t t
0 ] 0 h
(f) 10' ._q_\\.\ ......... (2.3) (g) 10' f _\\\ @3 ( ) 08 (23/3)”2
< \ =< [ 1\
= 102 N =10 ._
~ w s - N,
T ioarllo Y = S
104 A= h;:l | 104 XYy |
100 100 103 10° 100 100 103 10°
t t t

Figure 11. Evolution of the air layer thickness for a droplet settling on an elastic sheet with § = 0.05.
(a) Profiles for « = 1, hy = 1,1 = 1073 of the droplet h(r, t) and the viscous film Ay (r, 1) at t = 250. We
note that the thickness of the elastic sheet is not represented to scale for clarity. (b) Profile of the air layer
H(r,t) = hi(r,t) — ho(r, 1) for « = 1, hy = 1, 1 = 1073 and r = 250, 1000, 5000 and 10°. (c—¢) Evolution
of the air layer thickness at the axis of symmetry (r = 0), at its minimum value, and of the dimple radius
for 1 = 1073, hy =1 and o = 0.01, 0.1, 1, 10. (f —h) Likewise for « = 1 and various values of A and /g The
dashed lines in (d) and (e) show the height and radius at the local minimum corresponding to the dimple neck,

for @ = 10 and ¢ ~ 10* the minimum radius is not located anymore at the neck.

The continuous increase of the radius of the neck of the dimple helps to explain why the
analytical results for the sheet height presented in the previous section fail when @ = 1,
even when B,; < 1 and 7 < 7. The analysis is based on the results derived in § 5.1, which
formally only applies if the load that the droplet puts on the sheet were concentrated into
a single point in space. The results continue to apply asymptotically when the load is
localized to a small region as compared with the lateral extent of the deformations of

the sheet, which evolves as Fspeer () ~ 3.411/0, ie. ryneer (1) ~ a0 2 21/6£1/6 (we define
Tsheer(t) as the radial position of the maximum of £, (7, t), see figure 10a). For large enough
o the dimple radius increases as fast as the radial extent of the sheet deformations and the
load exerted on the sheet cannot be assumed to be localized to a very small region anymore
(figure 11e).

At long times 7 > t ~ 37(hs/ad)> and regardless of the value of «, nonlinear effects
of the thin film become important and the behaviour completely changes. Specifically, the
air film no longer forms a dimple but instead evolves into a rippled deformation similar to
the capillary case (§ 4.4), as illustrated in figures 8(c,d) and 11(d,e), where it can be seen
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that the minimum thickness is not located anymore at the neck of the dimple, and that the
pressure in the film below the elastic sheet is no longer negligible against the pressure in
the air film above it.

6. Discussion

We have studied the settling of a droplet onto three classes of thin soft layers coating a
rigid solid: a compressible elastic material, a viscous fluid, or an elastic sheet supported
by a viscous film. First, when the soft layer is made of a compressible elastic material
(§ 3), we found that depending on its softness the air layer separating the droplet and the
elastic solid transitions from the dimple characterizing droplet settling onto a rigid wall
to a layer with near-uniform thickness. This thickness is always larger than the minimum
thickness of the rigid case. Second, we studied in § 4 the settling towards a thin viscous
film, generalizing the analysis of Yiantsios & Davis (1990) for an infinite bath of fluid.
We derived the long-term asymptotics of both the film and of the air layer separating
the film and the droplet in the limit of small film deformations. The dimple shows the
same structure as for the case of a rigid substrate, but its thickness is asymptotically larger
by a factor 1 +&/5 = 1+ o01/03 with o7 and o3 the surface tension of the droplet and
of the liquid film, respectively. When the film deformation becomes large, we observed
rippled deformations which modify the drainage dynamics and in particular lead to a
sudden decrease of the minimum air layer thickness. Finally, we described in § 5 a droplet
settling towards an elastic sheet supported by a thin layer of viscous fluid. We found that
when the droplet is smaller than the elastogravity length the dimple profile of the air layer
is similar to the solid case, and derived analytically the response of the elastic sheet. For
droplets of size similar to or larger than the elastogravity length, we observed numerically
an increase of both the minimum thickness of the dimple and of its radius. In the three
cases studied, the deformation of the surface always leads to an increase of the minimum
thickness of the dimple, provided that these deformations are small. This suggests that
surface deformations upon droplet settling can delay impact or coalescence of the droplet
with the substrate.

We observed a shift in dynamics for large deformations of the viscous film coating a
solid substrate, with or without an elastic sheet on top. The dimple evolves then towards a
more complex structure which strongly affects the drainage process and, to our knowledge,
had not been described before for interactions between droplets and compliant surfaces.
This so-called rippled dimple occurs because of the nonlinear response of viscous films
to large deformations. A better understanding of this regime could also have applications
beyond settling droplets settling and impacting drops. Indeed, the response of a capillary
interface under load appears for instance in the deformation of glassy materials by
nanobubbles (Ren er al. 2020) and is relevant for lubricant-impregnated surfaces (Pack
et al. 2017) as well as other industrial applications (Carou et al. 2009; Lunz & Howell
2018), while an elastic sheet supported by a viscous fluid can be found in various situations,
from technological (Rogers, Someya & Huang 2010) and biological (Bongrand 2018)
applications up to the geophysical scale (Michaut 2011).

In our study of the settling of a droplet onto a thin liquid film, we focused on very
viscous films and verified that our choice of parameters justifies the assumptions required
for no slip of air at the interfaces of both the droplet and film. While this assumption
only alters the time scale of the dynamic on solid surfaces, where the no-slip condition
continues to apply at one of the interfaces, both numerical (Yiantsios & Davis 1990;
Duchemin & Josserand 2020) and experimental (Lo er al. 2017) studies have shown
that slip can significantly alter the dynamics of droplet deposition on a liquid film.
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The analysis presented in § 4 henceforth only applies in a regime where the air layer is
wide enough and the viscosity ratios large enough. It also applies when considering the
presence of surfactants, which can alter the boundary conditions at the interfaces, in either
the droplet or the film. It has long been known that a drop falling onto a dirty interface
takes much more time to coalesce than on a clean one (Reynolds 1881; Rayleigh 1882), and
indeed small amounts of surfactant have been shown to considerably delay the coalescence
process (Amarouchene, Cristobal & Kellay 2001).

For a droplet settling on an elastic sheet, we rationalized the dynamics for droplets
smaller than the elastogravity length and only considered bending stresses in the
description of the sheet. When the deformations of the sheet become significant compared
with its thickness, additional effects from stretching could appear. Including stretching in
the elastic model requires a more complete description, e.g. the full Foppl-von Kdrmén
equations (Landau & Lifshitz 1959).

Finally, in all the cases we have studied the minimum thickness of the air layer
continuously decreases with time and there would eventually be direct contact between the
droplet and the substrate. This usually occurs due to the influence of surface forces such
as van der Walls or electrostatic interactions (Oron, Davis & Bankoff 1997; Israelachvili
2011), rarefied gas effects (Duchemin & Josserand 2012), nano-roughness (Kolinski,
Mahadevan & Rubinstein 2014; Li, Vakarelski & Thoroddsen 2015) or other small scale
phenomena which can otherwise be neglected for most of the drainage dynamics. We did
not consider them in this study but isolated the coupling between the deformations of the
droplet and of the substrate. They should be incorporated when the minimum thickness of
the air layer reaches the order of a hundred nanometres or less as they lead to the rupture
of the air film then and to contact (Couder et al. 2005; Chan et al. 2011). In the case of
settling onto a viscous film, this supporting layer could also rupture due to surface forces
(Zhang & Lister 1999; Carlson & Mahadevan 2016). Contact can occur in an axisymmetric
manner (Chan et al. 2011), but Lo et al. (2017) showed experimentally that when a large
drop settles on a rigid surface, symmetry eventually breaks and contacts occur earlier than
for an axisymmetric situation. Axisymmetry could be preserved for deposition on thin
liquid films in their experiments. It would be interesting to understand when the deposition
process can become non-axisymmetric and, more generally, to investigate to which extent
the observations made and conclusions drawn in this work hold for drops with larger Bond
number.

This work also opens the question of possible effects of non-uniform substrates on
the drop settling dynamics. Directional transport of droplets above a substrate can for
instance be reached through a Leidenfrost dynamics above a textured solid (Lagubeau
et al. 2011) or a Marangoni dynamics of a drop above a liquid film with a temperature
gradient (Davanlou & Kumar 2015). Gradients of substrate stiffness (Style et al. 2013) or
bending rigidity (Bradley et al. 2019) can also lead to the transport of a droplet. Our work
gives a first minimal description of how gravitational settling dynamics of droplets can
be affected by a thin compliant layer, but there are many natural extensions such as how
nonlinear elastic effects, gradients in substrate properties and adhesive contact affect the
flow.
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Figure 12. Evolution of the minimum air layer thickness for droplet deposition on a viscous film and various
values of £, A and /. The parameter § is set to 0.05. The system of equations solved consists of (2.1). Equations

(4.13) and (2.1¢), and either (solid lines) accounting for the full stress balance using (4.1a) and (4.1b), or (dashed
lines) using the simplified equations (2.1a) and (4.3).
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Appendix A. Expression of ¥ (0, 7)

The height at the axis of symmetry r = 0 of a viscous film under an axisymmetrical,
confined and uniform load can be expressed from (4.11a,b) using the following identity:

1 [t 1—e P
o= [ ne——

TT
B Int+ 82 — 3y, +41In2)
- T
t 1 33 1
*mﬁ“z};bz’z}ﬁ]
1 3 5 1
" 536m 2 [{1’1}; {E’Z’Z’E};%] A

where y,,, is the Euler—Mascheroni constant, J; is the first-order Bessel function of the
first kind and ,F, is the (p, g) hypergeometric function defined as

—+00
. . . (@an--. (ap)n x_n
pFollar, ... ap}; (b1, .. by} x] = nZ:O oo’

(A2)

with (a), = []j_; (@ + k — 1) the rising factorial of a.
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Figure 13. Evolution of the liquid film height at the axis of symmetry (r = 0) for droplet deposition on a
viscous film and various values of &, A and h,. The parameter § is set to 0.05. The system of equations solved
consists of (2.1). Equations (4.13) and (2.1¢), and either (solid lines) accounting for the full stress balance
using (4.1a) and (4.1b), or (dashed lines) using the simplified equations (2.1a) and (4.3).

Appendix B. Shear stresses and droplet settling onto a solid substrate coated with a
thin viscous liquid film

For a droplet settling onto a viscous film discussed in § 4, considering the tangential stress
balance leads to the governing equations (4.1a) and (4.1b) for the thickness of the air layer
separating the drop and the film and for the height of the film, respectively. These two
equations are expected to simplify to (2.1a) and (4.3) as the viscosity ratio A between the
air and the liquid goes to zero, which allows us to find analytical results in that limit for
the evolution of both the gap and the viscous film. We solved numerically the system of
equations constituting of the normal stress balances (2.10) and (4.13), the force balance
(2.1¢), and the governing equations for the air film thickness and liquid film height as
either (i) accounting for the full stress balance using (4.1a) and (4.1b), or (ii) using the
simplified equations (2.1a) and (4.3) obtained when considering no slip in the air and
free slip in the viscous layer. Figure 12 shows the resulting evolution of the minimum gap
thickness H,,;, (¢) and that indeed, for 4 < 1, the two formulations are almost equivalent.
The evolution of the viscous film is even less affected than that of gap as shown in
figure 13.
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