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Sliding, vibrating and swinging droplets on an
oscillating fibre
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We study experimentally the dynamics of a water droplet on a tilted and vertically
oscillating rigid fibre. As we vary the frequency and amplitude of the oscillations the
droplet transitions between different modes: harmonic pumping, subharmonic pumping, a
combination of rocking and pumping modes, and a combination of pumping and swinging
modes. We characterize these responses and report how they affect the sliding speed of
the droplet along the fibre. The swinging mode is explained by a minimal model making
an analogy between the droplet and a forced elastic pendulum.

Key words: contact lines, capillary flows, parametric instability

1. Introduction

The interactions between liquid drops and fibres is ubiquitous in a wide range of situations
including liquid aerosol filtering (Agranovski & Braddock 1998; Zhang et al. 2015),
coating processes (Quéré 1999; Chan et al. 2021), digital microfluidics (Gilet, Terwagne
& Vandewalle 2009, 2010) and fog harvesting (Klemm 2012; Labbé & Duprat 2019). The
latter has also motivated research of droplets interacting with biological systems (Malik
et al. 2014) such as threads of spider silk (Zheng et al. 2010; Ju, Zheng & Jiang 2014)
and plants with fibre-like features such as sequoia needles, cactus spines, grass blades and
moss leaves (Limm et al. 2009; Ju et al. 2012; Roth-Nebelsick et al. 2012; Pan et al. 2016)
that are able to efficiently capture and transport water droplets. In most of these examples,
the fibre is generally not still but subject to motion due to external forcing such as wind.

Drops can spontaneously move on horizontal fibres due to spatial gradients in various
properties: thickness, most notably with conical fibres (Lorenceau & Quéré 2004;
McCarthy, Vella & Castrejón-Pita 2019; Chan, Yang & Carlson 2020), wetting (Zheng
et al. 2010; Ju et al. 2014), temperature (Yarin, Liu & Reneker 2002) or elasticity

† Email addresses for correspondence: stephapo@math.uio.no, acarlson@math.uio.no

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 967 A24-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

46
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:stephapo@math.uio.no
mailto:acarlson@math.uio.no
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.462&domain=pdf
https://doi.org/10.1017/jfm.2023.462


S. Poulain and A. Carlson

(Duprat et al. 2012). Droplets on non-horizontal fibres slide when the gravitational force
overcomes contact angle hysteresis. Gilet et al. (2010) studied this in detail for droplets
that perfectly wet fibres while Christianto et al. (2022) recently investigated numerically
the effect of a finite contact angle. In addition to these passive mechanisms, external
perturbations in the form of standing waves (Bick et al. 2015) or wind (Dawar et al.
2006; Dawar & Chase 2008; Sahu et al. 2013; Bintein et al. 2019) also lead to directional
transport. There have been anecdotal reports pointing to vibrations triggering droplet
motion on fibres (Dawar et al. 2006; Dawar & Chase 2008; Zhang, Lin & Yin 2018),
yet quantitative data to describe this effect are lacking.

One way to induce reproducible vibrations of droplets is by inducing rigid-body
oscillations of the substrate. So far, studies of this phenomenon have only focused on flat,
planar surfaces, where two types of experimental set-ups have been employed: droplets on
a slanted flat substrate submitted to vertical oscillations, and droplets on a horizontal flat
substrate submitted to slanted oscillations. In both cases a directional motion of the droplet
is generated for high enough amplitude of oscillations. Recent reviews of experimental,
theoretical and numerical results regarding the rich dynamics of these systems are given by
Bradshaw & Billingham (2018), Deegan (2020) and Costalonga & Brunet (2020). In short,
a droplet in such a situation experiences a modulation of its contact area through pumping
modes of vibrations that periodically stretch and flatten it, while also experiencing rocking
lateral vibrations. A schematic illustration of the first pumping and rocking modes is shown
in figure 1(a,b). They correspond to the first mode with only radial deformations and to
the first mode with azimuthal deformations. Bostwick & Steen (2014) rationalized their
existence by adapting the Rayleigh–Lamb theory of vibrating free drops (Rayleigh 1879;
Lamb 1924) to sessile drops. The combination of both rocking and pumping responses,
and in particular their phase difference (Noblin, Kofman & Celestini 2009), can trigger
directional motion. On slanted substrates, a pumping mode alone can trigger motion if the
periodic evolution of the wetted area unpins the droplet.

Quantitatively, for a given frequency of vibrations f , the mechanical amplitude of
vibrations A needs to be larger than a threshold Ath to trigger motion: for A > Ath, droplets
have a non-zero mean velocity 〈U〉, defined as the velocity of the centre of mass along
the substrate averaged over one period of oscillations; 〈U〉 is typically in the direction
of the oscillations or that of gravity, leading to a sliding droplet with 〈U〉 > 0. A less
intuitive regime of climbing droplets with 〈U〉 < 0 also exists (Brunet, Eggers & Deegan
2007; Sartori et al. 2019; Costalonga & Brunet 2020). In the most common case of sliding
drops, Costalonga & Brunet (2020) proposed the following empirical relationship to fit
experimental and numerical data:

〈U〉 − U0 = s(A − Ath)
χ , A > Ath. (1.1)

We have modified this relation to account for U0, the speed that the droplet has without
oscillations. The exponent χ and the mobility coefficient s quantify the nature of the
relationship between the speed and the amplitude. Their values, along with that of Ath,
characterize the response of a droplet on a substrate submitted to oscillations. These
parameters depend on the liquid properties (surface tension coefficient, density, viscosity),
the size of the droplet, the wetting properties of the substrate, the frequency f of the
oscillations and the angles of both the substrate and oscillations with respect to the
horizontal direction. Numerical and theoretical works are mostly consistent with χ = 2.
In particular, Bradshaw & Billingham (2018) derived and verified numerically 〈U〉 ∼ A2

for inviscid two-dimensional drops with no contact angle hysteresis and small amplitude
of oscillations. Their results also confirm theoretically the importance of the phase shift
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Figure 1. (a,b) Schematic illustration of (a) the first pumping mode and (b) the first rocking mode of a sessile
droplet with a mobile contact line on a flat substrate. A pumping droplet flattens and stretches perpendicularly
with respect to the substrate, while a rocking droplet vibrates left and right along the substrate. (c) Schematic
of the experimental set-up. A well-taut nylon fibre of diameter b is attached to a structure oscillating vertically
with amplitude A and angular frequency ω = 2πf . The fibre makes an angle α with respect to the horizontal
direction. As it oscillates and its position evolves as yfibre = A cos(α) cos(ωt), a water droplet of volume V
slides down at speed 〈U〉. (d) Image a of droplet (V = 4 μl) on a still horizontal fibre (α = 0◦). The static
contact angle between the droplet and nylon fibres is measured to be θ = 65◦ ± 7◦. (e) Images of a droplet over
one period T = 1/f . Here, V = 4 μl, b = 200 μm, α = 27.5◦, A = 0.10 mm and f = 60 Hz. The resulting
acceleration from the oscillations is Aω2 = 14.2 m s−2 so that Γ = Aω2/g = 1.45. The dotted line represents
the mean value of yfibre and highlights the fibre’s motion. The position of the centre of mass of the droplet
projected on the fibre is xdrop, that of the advancing contact line is xa and that of the receding contact line
is xr. ( f ) Top image shows the time evolution of the position of a droplet with the same conditions as in (e).
The droplet moves at near-constant speed 〈U〉 = 〈dxdrop/dt〉 = 22.6 mm s−1. The bottom image shows the
corresponding time evolution of the position of the fibre yfibre (solid line) and of the basal diameter d = xa − xr
(dashed line).
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between the rocking and pumping modes. Experimental investigations on the other hand
usually suggest χ � 1, giving a linear relationship between the forcing amplitude and the
speed. Yet values of χ larger than 1 can be also be observed experimentally, and a regime
of decreasing speed upon increase of forcing has also been reported by Sartori et al. (2019).
Overall, the dependence of the coefficients involved in (1.1) is not well understood, even
though the experiments by Costalonga & Brunet (2020) shed some light on the influence
of many of the parameters involved for horizontal flat surfaces with low contact angle
hysteresis, namely the frequency, viscosity, droplet volume and angle of vibrations. To the
best of our knowledge, the effect of the surface geometry has not been explored.

In this article we experimentally probe the behaviour of a droplet placed on a fibre
that oscillates vertically. We report the sliding speed as a function of the amplitude and
frequency of the forcing. Further, we describe transitions between different regimes in the
phase space of the sliding droplet dynamics, which contrasts with prior observations on
flat substrates.

2. Experimental set-up

Our experimental set-up is sketched in figure 1(c). A nylon fibre (fishing line, Abu Garcia
abulon top) of diameter b and making an angle α with the horizontal is connected
to a mechanical vibrator (PASCO SF-9324). A periodic sinusoidal signal is generated
(NI myDAQ), amplified (QSC RMX850a) and fed into the vibrator so that the fibre
displacement is yfibre(t) = A cos(α) cos(ωt), where A is the amplitude of the mechanical
oscillations and ω = 2πf their angular frequency. The fibre is taut enough so that it follows
a rigid-body motion, and we verified that the precise value of the tension did not influence
our results. The tension in the fibre is regularly readjusted to counteract the relaxation of
the nylon. The maximum acceleration of the structure resulting from these oscillations
is Aω2, we normalize it using the gravitational acceleration g = 9.81 m s−2 and define
the ratio of accelerations as Γ = Aω2/g. We deposit a droplet of volume V , equivalent
spherical radius r = (3V/4π)1/3, onto the oscillating fibre with a micropipette and record
its motion over approximately 40 mm along the fibre as it slides downward. The droplet
motion is recorded with a high speed camera (Photron FASTCAM Mini) with a frame rate
ranging from a few hundreds and up to 5000 f.p.s.; the typical resolution is 20 μm pixel−1

using a standard macro lens. Droplets are made of deionized water with a small amount
of black die (nigrosin) to facilitate visualization. The relevant physical properties of water
are its density ρ = 1.0 × 103 kg m−3, surface tension coefficient σ = 70 mN m−1 and
dynamic viscosity μ = 1 mPa · s. Experiments are performed at ambient temperature
(22 ◦C) and the droplet’s evaporation is negligible over the time scale associated with
its motion. Representative images and measurements are shown in figure 1(e, f ). Between
each experiment the fibre is cleaned with lint-free wipes soaked in acetone and a new
droplet is placed on the fibre once the acetone has fully evaporated.

Inferring the contact angle of a droplet on a fibre is not straightforward (figure 1d).
To measure the contact angle between nylon and water we used the following procedure.
A glass slide is cleaned with isopropanol before being placed on top of small pieces of
nylon fibre. This set-up is placed in an oven with a temperature just above the melting
point of nylon. Once the nylon-covered glass slide is cooled to room temperature, the nylon
film is peeled away and gives a uniform and flat film. We deposited 2 μl water droplets
on this nylon film and measured the contact angle using a subpixel edge detection method
(Trujillo-Pino et al. 2013). The static contact angle is θ = 65◦ ± 7◦, close to previously
reported contact angle values for water droplets on nylon.
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Droplets on an oscillating fibre

The behaviour of droplets on oscillating substrates depends strongly on the frequency
f of the forcing oscillations, and in particular on the ratio f /fpump, with fpump the natural
frequency of the first pumping mode of the droplet (Costalonga & Brunet 2020). The
natural frequencies of vibrations of inviscid droplets scale as (σ/ρV)1/2 and the full
analytical expression for freely suspended spherical drops is well known (Rayleigh 1879;
Lamb 1924). Sessile droplets on flat and horizontal surfaces exhibit different responses
due to the change of geometry: this has been studied in detail by Bostwick & Steen (2014)
and Chang et al. (2015). We also expect drops on fibres to exhibit different eigenmodes
and natural frequencies that are a function of the fibre diameter b and of the wetting
properties of the substrate. Here, we measure the first natural frequency fpump of pumping
oscillations by subjecting a droplet with V = 4 μl (r � 1 mm) deposited on a horizontal
fibre (α = 0◦) with diameter b = 200 μm to a step vertical acceleration. We recorded the
distance between the bottom of the fibre and the tip of the droplet following this impulse:
this generates a periodic decaying signal with frequency fpump = 57 ± 1 Hz.

To quantify the expected effect of viscosity in the droplet’s behaviour, an important
parameter is the ratio between the thickness of the Stokes’ boundary layer δ = (2μ/ρω)1/2

and the characteristic size of the droplet, taken here as its equivalent spherical radius
r = (3V/4π)1/3. Even for the smallest frequency we have used, the Stokes layer is
much thinner than the droplet itself: δ ≈ 0.15 mm � r ≈ 1 mm for a V = 4 μl water
droplet on a fibre oscillating at f = 15 Hz. This is equivalent to a large Reynolds number
Re = ρ(rω)r/μ = 2(r/δ)2 � 100. This suggests that viscous effects are localized in a thin
boundary layer and that the flow in most of the droplet is inertial. Another measure of the
importance of viscosity is the Ohnesorge number Oh = μ(ρrσ)−1/2, the inverse squared
Reynolds number based on the capillary speed σ/μ, which compares viscous effects with
both inertial and capillary ones; here, Oh ≈ 4 × 10−3 � 1. The Weber number comparing
inertial with capillary effects is We = ρ(rω)2r/σ and ranges from 0.1 to 10 upon varying
the frequency from 15 to 135 Hz, suggesting a competition between inertia and capillarity.
We consider droplets that are larger than the fibre they are deposited on, r > b, but smaller
than the capillary length lc = (σ/ρg)1/2 ≈ 3 mm so that the Bond number quantifying the
ratio of capillary to gravitational effects is Bo = (r/lc)2 ≈ 0.1. While smaller than 1, this
Bond number is large enough for gravity to significantly modify the equilibrium shape
(Gupta et al. 2021) and the droplets we study sag on the fibre, see figure 1(d,e).

3. Droplet sliding speed

Our main dataset focuses on a nylon fibre of diameter b = 200 μm making an angle α =
27.5◦ with the horizontal, on which a water droplet of volume V = 4 μl is deposited. We
systematically vary the frequency of oscillations from f = 15 to 135 Hz, and the amplitude
from zero and up to the detachment of the droplet from the fibre. Reported values of the
speed of the droplet 〈U〉 shown throughout the article (figures 2, 9, 10 and 11) represent the
mean and standard deviation of typically 3 different experiments. We note that, with these
parameters, the droplet naturally slides down the fibre with a speed U0 = 2.5 ± 1.6 m s−1,
the droplet’s speed without vibrations (A = 0, Γ = 0). We believe that this large relative
error originates from small defects and chemical inhomogeneities in the nylon fishing
lines, which can affect the contact angle dynamics. We will also show that there is no
significant qualitative change in our observations when the droplet is pinned to the fibre
(U0 = 0) for lower angles α or large diameters b.

As we discussed in the Introduction, § 1, an empirical correlation between the forcing
amplitude and the droplet’s speed is given by (1.1), which is typically linear (χ = 1) in
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Figure 2. Experimental results regarding the droplet’s sliding speed 〈U〉 with V = 4 μl, b = 200 μm, α =
27.5◦. (a) Mobility parameter s = d〈U〉/dA obtained from a linear fit as a function of the forcing frequency f
considering only droplets responding with a harmonic pumping mode. Panels (b–e) show 〈U〉 as a function of
the normalized forcing acceleration Γ for various frequencies f . Filled symbols represent experiments where
the droplet exhibits harmonic pumping vibrations. Open symbols represent experiments where the droplet:
(c) exhibits subharmonic pumping vibrations at frequency f /2; (d) exhibits both harmonic pumping and rocking
modes; (e) swings subharmonically in a pendulum-like fashion at f /2. These various responses are illustrated
in figures 4, 5 and 6, respectively. We have chosen to represent 〈U〉 as a function of the normalized acceleration
Γ = Aω2/g rather than as a function of the amplitude A: this allows us to more easily compare data with
different frequencies. The resonant response shown in (a) is also evident when representing the averaged slope
d〈U〉/dγ as a function of f (not shown).
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Droplets on an oscillating fibre

most experimental work using flat substrates. We therefore expect a linear relationship
between the droplet sliding speed and the amplitude of vibrations as 〈U〉 − U0 = s(A −
Ath) for A > Ath, which allows us to define a constant s = d〈U〉/dA. In figure 2(a) we
show the evolution of s as a function of the forcing frequency f : we observe a resonant
behaviour with a maximum for f ≈ 50 Hz, which is near but slightly below the natural
pumping frequency fpump = 57 Hz discussed in § 2. We note that Costalonga & Brunet
(2020), using a different set-up, found a maximum of mobility s for a frequency close to,
but in their case larger than, fpump. Figure 2(b) shows 〈U〉 as a function of Γ for selected
frequencies where the linear relation (1.1) with χ = 1 indeed seems to be satisfactory.

In figure 2(a) we extract s only considering droplets that respond solely with harmonic
pumping. This mode of response is shown in figure 1(e) and is the analogue of the pumping
response for a flat substrate (figure 1a): the droplet periodically stretches and flattens
perpendicularly to the fibre, and with the same frequency as the forcing frequency f . The
associated data are represented with filled markers in figure 2(b–e); we will discuss in
the next section the other regimes we have observed. When the relationship between the
droplet’s speed and the forcing amplitude is nonlinear, we extracted s from a linear fit
but for small amplitudes only in order to compare with the other datasets. Indeed, while
the exponent χ = 1 is reasonable for most frequencies, some of the data would be fitted
more adequately with χ > 1, e.g. f = 15 Hz in figure 2(b). Such superlinear behaviour is
common in numerical studies and has also been observed in some of the experiments of
Costalonga & Brunet (2020). In Appendix A we show data with a smaller tilt angle α = 15
and 7.5◦ (figure 9) and with larger fibre diameters b = 400 and 600 μm (figure 10): in these
cases U0 = 0, and we still observe a monotonic increase of the sliding speed as a function
of the amplitude of vibrations for harmonically pumping droplets. Varying the tilt angle
still yields χ ≈ 1, while increasing the fibre diameter gives more consistently a sublinear
behaviour with χ < 1.

Harmonic pumping vibrations of the droplet modulate its basal diameter d at the forcing
frequency f . To investigate the relationship between the droplet’s speed and the amplitude
of oscillations, we first consider the average diameter 〈d〉 = (1/T)

∫ T
0 d(t) dt. Figure 3(a)

shows a correlation between 〈d〉 and the average droplet sliding speed 〈U〉, with a collapse
of the data obtained at different frequencies: as the amplitude of fibre’s oscillations
increases, 〈d〉 decreases while 〈U〉 increases. We note that, given the shape of the droplet, d
is proportional to the wetted area of the droplet on the fibre S � πbd. It is, however, unclear
how we should understand this link. There are three forces acting on the droplet along
the fibre: the gravitational force Fg = ρgV sin(α), the viscous frictional force Fv ∼ dμU
and the capillary force Fc ∼ σb. The viscous force depends on the distribution of shear
stress: this has not been studied for non-axisymmetric droplets with a finite contact
angle on fibres, even in the case of steady sliding, except for axisymmetric and perfectly
wetting drops (Lorenceau & Quéré 2004; Gilet et al. 2010). The capillary force is the
unbalanced Young’s force which depends on the dynamic apparent contact angles, it is
not possible to accurately estimate this in our experimental set-up. Additional experiments
(see Appendix A) suggest that the driving force leading to sliding is gravity and that it
is mostly resisted by the unbalanced Young’s force, not by viscous drag. We therefore
believe that the link between sliding speed and averaged basal diameter (figure 3a) reflects
indirectly a dependence on the distribution of dynamic contact angles around the fibre.

It is also interesting to look at the phase angle β between the basal diameter d
and the fibre position yfibre: β = 0 or 2π corresponds to an evolution where d is
maximal at the crest of the fibre’s oscillations, while β = π corresponds to the opposite
situation where d is minimal at the crest. Figure 1(e, f ) shows an example where β ≈ π.
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Figure 3. Data corresponding to V = 4 μl, b = 200 μm, α = 27.5◦. (a) Droplet’s sliding speed 〈U〉 as
a function of the averaged basal diameter 〈d〉 = ∫ T

0 d(t) dt/T for various frequencies f upon varying the
amplitude of the oscillations. Filled symbols represent data where the droplet exhibits a harmonic pumping
mode. Open circles (◦) for f = 90 Hz correspond to subharmonic pumping while open upwards triangle (	) for
f = 120 Hz correspond to a combination of pumping and rocking modes. (b) Phase angle β between the basal
diameter d and the fibre’s position yfibre as a function of the amplitude of oscillations for three representative
frequencies. Only droplets showing a harmonic pumping mode are considered. (c) Mean value of β averaged
over all amplitudes as a function of the frequency f . To account for the fact that an angle is defined modulo 2π,
the mean value and standard deviation used as error bars in (b) and (c) are defined as the following directional
moments: arg(m) and (−2 ln(|m|))1/2, respectively, with m = ∑n

j=1 exp(iβj)/n.

We systematically extracted β using a Fourier analysis of the two signals d(t) and yfibre(t).
Figure 3(b) shows the evolution of β with the acceleration Γ for three representative
frequencies, while figure 3(c) shows β, averaged over all Γ , as a function of the frequency.
For a fixed frequency there is generally little change of β upon varying the acceleration:
for f � 40 Hz, β � 3π/2, while it drops to β ≈ π for f � 50 Hz. For f = 45, 47.5 and
50 Hz, near the resonance peak shown in figure 2(a), β continuously decreases with Γ .
We note that β has been correlated with the speed and mobility of droplets in prior works
on vibrating flat substrate. Sartori et al. (2019) delimited regimes of descending and fast
descending droplets, where β ≈ π in the descending regime and β close to 0, or 2π,
in the fast descending regime. Similarly Costalonga & Brunet (2020) found β ≈ 0 near
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the maximum droplet mobility s, while β ≈ π corresponds to climbing drops in their
experiments.

The discussion above only focused on droplets responding to the fibre’s oscillations
with a harmonic pumping motion, but this is not the only interfacial motion that is
generated. While figures 1(e, f ) and 2(a,b) summarize some of our observations on the
droplet speed as a function of the amplitude, it also hides some complex interfacial flows:
we have observed different regimes of droplet response for f ≈ 90 Hz, f ≥ 120 Hz and
30 � f � 45 Hz. We show in figure 2(c–e) the effects that these different regimes have on
the sliding speed and focus next on these.

4. Regimes of droplet response

For some forcing frequencies the droplet can transition from one regime of vibrations to
another upon increasing the forcing amplitude, with important effects on the sliding speed.
We now discuss these different transitions in turn.

4.1. Transition from harmonic to subharmonic pumping for f ≈ 90 Hz
Figure 2(c) shows 〈U〉 as a function of Γ for f = 90 and 95 Hz. Above a threshold
normalized acceleration Γsub � 5 and 6, respectively, we observe that the droplet
transitions from a regime of harmonic pumping to a regime of subharmonic pumping,
where the droplet responds at half the forcing frequency f . We also observed the same
behaviour for f = 85 Hz, not shown for clarity since the corresponding data are very
close to those with f = 90 Hz. This transition from harmonic to subharmonic response
corresponds to a sharp increase of the sliding speed 〈U〉 for f = 85 and 90 Hz. There is
also an increase, albeit more moderate, at f = 95 Hz.

Figure 4 shows the difference in the shapes and dynamics of two representative
experiments performed at f = 90 Hz and near Γsub, with a harmonic response for Γ =
4.7 < Γsub and a subharmonic response for Γ = 5.5 > Γsub. Despite a relatively small
change in the forcing amplitude, we observe a doubling of the speed of the droplet’s centre
of mass 〈U〉. Interestingly, one of the most obvious differences between the two droplets is
regarding their basal diameter d. It shows little variation in the harmonic regime, evolving
from 1.4 to 1.8 mm, compared with the subharmonic region, when it goes down to 1 and
up to 2 mm. Its averaged value 〈d〉 is also smaller in the subharmonic case, and in fact
figure 3(a) shows that the correlation between 〈d〉 and 〈U〉 previously discussed still holds.
In Appendix A we show that this subharmonic response appears and also causes a jump
in speed for thicker fibres or smaller tilt angles.

It is interesting to put these observations into perspective with prior work on droplets
moving on a flat substrate. First, the existence of a subharmonic behaviour above a
forcing threshold is reminiscent of the parametric Faraday instability (Miles & Henderson
1990) and is the result of a competition between inertia and capillarity. Subharmonic
droplet deformations are commonly observed on forced sessile droplets on flat substrates
(Chang et al. 2015; Chang, Daniel & Steen 2017). Maksymov & Pototsky (2019)
showed, using an inertial thin film model, that, for small forcing accelerations, droplets
respond harmonically, and that subharmonic Faraday waves only occur above a threshold
acceleration. Costalonga & Brunet (2020) observed experimentally the possibility of
subharmonic response in their set-up of droplets on a horizontal substrate submitted to
slanted vibrations. However, they report a transition from harmonic response for sliding
droplets (〈U〉 > 0) to subharmonic response for climbing droplets (〈U〉 < 0), while we
observe an acceleration of the descending speed in the subharmonic regime. We also note
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Figure 4. Illustration of the harmonic and subharmonic droplet behaviours observed at f = 90 Hz with V =
4 μl, b = 200 μm, α = 27.5◦ and (a,b) A = 0.14 mm, Γ = 4.7 (c,d) A = 0.17 mm, Γ = 5.5. (a,c) Snapshots
showing that the shape of the droplet is periodic with period T and 2T , respectively. The dotted line is fixed
in the laboratory frame and represents the maximum position of the fibre, which highlights its oscillations.
(b,d) Corresponding evolution of the fibre’s position (solid line) and basal diameter (dashed line). The mean
value of the droplet’s speed is (a,b) 〈U〉 = 31 mm s−1 and (c,d) 〈U〉 = 58 mm s−1. See supplementary movies
1 and 2 available at https://doi.org/10.1017/jfm.2023.462.

that they obtained a subharmonic regime for f � 1.5fpump; this 1.5 factor also matches our
experiments (1.5fpump � 85 Hz). Second, using droplets on tilted liquid infused substrates
submitted to vertical vibrations, Sartori et al. (2019) observed experimentally above a
threshold acceleration a regime that they refer to as fast descending, where droplets slide
much faster. This regime is associated with a basal diameter showing much more important
variations than in the regular descending regime, similarly to our experiments. Finally,
through numerical simulations, Ding et al. (2018) reproduced the experiments of Brunet
et al. (2007) of droplets on tilted substrates with vertical vibrations. Their results suggest
the strong importance of a non-sinusoidal evolution of the wetted area S ≈ πbd. We also
see in figure 4(b,d) that d switches from near-sinusoidal in the harmonic case to completely
non-sinusoidal when the response is subharmonic.

4.2. Transition from pumping to rocking for f ≥ 120 Hz
Most droplets we have observed only exhibit a pumping mode, shown already in
figures 1(b,c) and 4. For f = 120 and 135 Hz and for high enough amplitude of vibrations,
we observe a transition where the droplet can exhibit a combination of pumping and
rocking modes. This is illustrated in figure 5. The existence of this rocking mode is
particularly evident when considering the instantaneous speed dxdrop/dt, figure 5(e). In the
pumping-only mode, the droplet exhibits a near-constant velocity, showing variations of
≈20 % around the mean value 〈U〉: this is because pumping vibrations are mostly normal
to the fibre. When the rocking mode appears, lateral vibrations become significant and the
speed of the centre of mass of the droplet shows significant variations around the mean.

As shown in figure 2(d), this rocking mode significantly increases the sliding speed 〈U〉.
This happens despite the fact that the averaged basal diameter 〈d〉 is larger in the presence
of the rocking mode (figure 5c,d), and the correlation of figure 3 does not hold anymore.

967 A24-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

46
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.462
https://doi.org/10.1017/jfm.2023.462


Droplets on an oscillating fibre

1.000.75

t/T
0.500.250

2 mm

1.00

2.5

2.0

1.5

1.0

d 
(m

m
)

d 
(m

m
)

0.750.500.25

0.3

–0.3

y fib
re

 (
m

m
)

0

1.00

2.5

2.0

1.5

1.0
0.750.500.250

0

0.3

t = 0

T/8

T/4

3T/8

5T/8

3T/4

7T/8

T

T/2

–0.3

y fib
re

 (
m

m
)

0

0

100

U
 (

m
 s

–
1
)

200

(a)

38 mm s–1 83 mm s–1

(b)

(b)

(a)

(e)

(b)(a) (c)

(d )

Figure 5. Droplets with f = 120 Hz, V = 4 μl, b = 200 μm, α = 27.5◦ and (a,b) A = 0.23 mm, Γ = 13.4
(c,d) A = 0.31 mm, Γ = 18.0. The difference in the shape of the droplet over one period is illustrated in (a,b).
The dotted line represents the maximum value of yfibre and highlights the fibre’s vibrations. Panels (c) and (d)
show the time evolution of the basal diameter for the droplets in (a) and (b), respectively. (e) Instantaneous
droplet speed. Averaged over one period, the mean value is (a) 〈U〉 = 38 mm s−1 and (b) 〈U〉 = 83 mm s−1.
See supplementary movies 3 and 4 available in the supplementary material.

In this regime the combined effects of rocking and pumping cannot be captured solely
by the change in wetted area, similarly to what is observed on droplets on horizontal
flat surfaces submitted to slanted vibrations (see Costalonga & Brunet (2020) and the
discussion in § 1).

4.3. Transition between pumping and swinging for 30 Hz � f � 45 Hz
Figure 2(e) shows the speed of droplets as a function of the amplitude of oscillations for
f = 30, 40 and 45 Hz. For these three frequencies the droplet can respond by swinging
across the fibre similarly to a pendulum, as illustrated in figure 6. This swinging motion is
subharmonic at half the forcing frequency.

At f = 30 Hz, the swinging motion is only observed for high enough amplitude of
oscillations and when droplets are significantly perturbed or after being deposited on the
fibre (e.g. due to the detachment from the micropipette, or by flicking the oscillating
structure). When they are gently deposited on a still fibre with a slowly increasing
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Figure 6. Droplets at f = 30 Hz V = 4 μl, b = 200 μm, α = 27.5◦ and A = 0.26 mm, Γ = 0.96. (a,b)
Vibrating-only regime where the droplet slides at 〈U〉 = 18 mm s−1, (c,d) Subharmonic swinging regime
where the droplet slides at 〈U〉 = 31 mm s−1. (a,c) View from the side and (b,d) from the top, looking down
at the droplet. (e) Time evolution of the basal diameter d extracted from the movies corresponding to (a,b) and
(c,d). In the latter case, when the droplet swings, we did not extract d with automatic image processing but did
manual measurements combining both the side and top views as needed. We could not extract accurate data for
0 < t < 0.5T and T < t < 1.5T . See supplementary movies 5–8 available in the supplementary material.

amplitude of oscillations, only the harmonic pumping response is observed. However, once
they enter the swinging mode they do not return to harmonic pumping. Henceforth, for
f = 30 Hz, the harmonic pumping response is unstable to finite perturbations. Figure 2(e)
shows that the transition to the swinging mode significantly increases the sliding speed.

Figure 6(e) shows that, in the swinging mode, the basal diameter d and hence the
wetting area S are significantly smaller than in the pumping case. This can be understood
at least partly by considering the centrifugal acceleration induced by the swinging
motion. The droplet has an equivalent spherical radius r = (3V/4π)1/3 � 1 mm and
swings at f /2 so that its angular velocity can be approximated, on average, as ω/2. The
resulting centrifugal acceleration is rω/2 ≈ 9 m s−2, which is comparable to both the
gravitational acceleration and to the acceleration induced by the fibre motion (here Γ � 1
and hence Aω2 � g = 9.8 m s−2). This supports the idea that the centrifugal acceleration
due to swinging pushes the droplet away from the fibre, diminishing its wetting area.
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Droplets on an oscillating fibre

However, the data would not collapse on figure 3(a) showing the correlation between 〈d〉
and 〈U〉; this is not surprising and shows that energy is dissipated differently as the flow
inside the droplet is very different when swinging as compared with when it is pumping.

When increasing the frequency to f = 40 Hz, harmonic pumping becomes more
and more unstable and eventually cannot be reached anymore. Here, we only observe
subharmonic swinging even at low amplitude of oscillations. Increasing again the
frequency to f = 45 Hz, we also only observed subharmonic swinging at low amplitude.
However, upon increasing the amplitude the droplet switches to a subharmonic pumping
mode. At this frequency ( f = 45 Hz) it is now the swinging mode that becomes unstable
at high amplitude; this transition also increases drastically the sliding speed (figure 2e).
Data with a different fibre diameter and different tilt angles shown in Appendix A also
exhibit this behaviour.

While the two previously discussed regimes of rocking and subharmonic pumping are
also observed on flat vibrating substrates, swinging droplets can only occur on fibres. Next,
we aim to rationalize the existence of this swinging mode.

5. Droplet swinging around a horizontal fibre

5.1. Experiments
In order to obtain a clearer picture of the pendulum-like swinging droplet motion
illustrated in figure 6, we focus on droplets on horizontal fibres (α = 0◦) to decouple the
droplet’s sliding motion from its response to oscillations. We construct a regime map
from experiments, where we observe three different behaviours: harmonic vibrations,
subharmonic vibrations and swinging. This is shown in figure 7, confirming the
observations in § 3 on tilted fibres, namely, the existence of a subharmonic swinging
regime for f ranging from approximately 30 and up to 45 Hz, and a subharmonic vibration
starting near 80 Hz. This regime map is obtained as follow: at a given frequency, the
amplitude of oscillations is increased from 0 and up to a change of regime of vibrations
or detachment of the droplet from the fibre. Care was taken to ensure that the rate of
the amplitude sweep, dA/dt, was small enough to not influence the measured threshold
represented as symbols in figure 7. For each threshold, this procedure was repeated five
times to obtain standard deviations shown by the error bars. For thresholds corresponding
to transitions between two regimes of vibrations, the same procedure was then repeated
starting from a high amplitude of oscillations and slowly lowering it. The two procedures,
increasing or lowering the amplitude of oscillations, give slightly different thresholds;
this explains the overlap between regions of harmonic and subharmonic pumping for
f ≥ 80 Hz. Figure 7 also shows a region where both a harmonic vibrating droplets and
subharmonic swinging droplets can coexist. In the latter regime, subharmonic swinging
only takes place if a finite perturbation is introduced in the system (e.g. blowing gently on
the droplet, depositing the droplet on an already vibrating fibre or flicking the vibrating
structure), or when decreasing the amplitude of vibrations from the region where only
swinging motion occurs. Once a droplet is in the subharmonic swinging mode it enters a
stable state, and we never observed a droplet switching from a swinging to a non-swinging
motion. For f = 25 and 30 Hz, the structure was flicked manually to see if swinging
could take place. At these two frequencies the region of swinging motion is bounded from
above below the ejection threshold: this is not because the droplet switches to harmonic
vibrations upon increasing the amplitude, but because it detaches from the fibre when the
swinging mode is excited at higher amplitudes.
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Figure 7. Regime map of the three different droplet behaviours (V = 4 μl) on a horizontal fibre (α = 0◦) of
thickness b = 200 μm. The region between the horizontal line Γ = 0 and the circles, in blue, represents the
regime of harmonic vibrations. The region between triangles, in green, represents the regime of subharmonic
vibrations at f /2. The region between squares, in red, represents the regime of subharmonic swinging at f /2.
The grey hatched region between 45 and 47 Hz corresponds to a narrow range of frequencies where it is
challenging to obtain reproducible results. The top axis represents the dimensionless frequency ω/ωp, with
fp = ωp/2π the pendulum frequency discussed in the text. We have used fp = 15 Hz.

5.2. Analogy with a forced pendulum
The swinging motion of the droplet is reminiscent of a pendulum. We illustrate this
analogy in figure 8(a,b) between a droplet hanging below an oscillating fibre and a
pendulum with constant length Leq, mass m, in the gravitational field g and submitted
to vertical oscillations of its support as A cos(ωt). By making this analogy we assume the
droplet to be a solid with a motion described by a single degree of freedom, the angle φ

with respect to the vertical direction, and ignore any interface deformations. This system
obeys the following damped Mathieu equation (Kovacic, Rand & Sah 2018), which is the
classical pendulum equation written in the frame of the oscillating support:

φ′′(t) + 2cpωpφ
′(t) + ω2

p(1 − Γ cos(ωt))φ(t) = 0, ωp = (g/Leq)
1/2, (5.1)

where (·)′ = d(·)/dt denotes the derivative with respect to time, and ωp is the natural
frequency of pendulum oscillations. We have assumed small angles with |φ(t)| � 1,
and to account for dissipation we have included a linear damping term characterized by
the dimensionless friction coefficient cp. Equation (5.1) is an archetype for parametric
instabilities with connections to a wide range of physical phenomena and has been studied
extensively (Kovacic et al. 2018). The equilibrium position φ = 0 is unstable for large
enough values of the forcing Γ at driving frequencies ω ≈ 2ωp/n, with n = 1, 2, 3, . . .

a positive integer. The most unstable mode corresponds to n = 1, ω � 2ω0, where the
pendulum then swings subharmonically at ω/2. A stability diagram of (5.1) is shown in
figure 8(d) where the greyed regions represent the so-called Arnold tongues of instability,
where the position φ = 0 is linearly unstable and the oscillations of the substrate make the
pendulum swings. The Arnold tongues would go down to Γ = 0 in the undamped case
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Figure 8. Analogy between (a) a droplet swinging of a fibre – visualized in a plane perpendicular to the
cross-section of the fibre – and (b) a simple pendulum or (c) an elastic pendulum with spring constant k, with
a point mass m and an equilibrium length Leq. The system is placed in the gravitational field g, the support
oscillates as A cos ωt and φ denotes the angle with respect to the vertical. (d) Linear stability diagrams of (5.2)
for a simple pendulum and an elastic pendulum for different values of Ω = ωp/ωs, the ratio of the natural
frequency of the pendulum motion ωp = (g/Leq)

1/2 to that of the spring motion ωs = (k/m)1/2. The damping
coefficients are cs = cp = 0.15, and Γ = Aω2/g is the dimensionless forcing acceleration.

(cp = 0), the main effect of damping is to shift the tongue of instabilities to higher values
of Γ .

We assume that a droplet sagging on a fibre can be mimicked as a simple pendulum and
can then be modelled by (5.1), with Leq = I/a, ωp = (mga/I)1/2 for a physical pendulum
with a homogeneous distribution of mass. Here, a is the distance from the axis of rotation
to the centre of mass of the droplet and I the moment of inertia of the droplet about the
axis of rotation. We estimate a and I from experimental images of a droplet on a static fibre
(Γ = 0) and find fp = ωp/2π ≈ 15 Hz for a 4 μl water droplet on a 200 μm horizontal
nylon fibre. From the discussion above we would then expect to observe a swinging motion
centred around f ≈ 2fp = 30 Hz. Experiments show that the range of unstable frequencies
is 30 Hz � f � 45 Hz.

One explanation to this discrepancy could be an inaccurate estimation of the natural
frequency fp. Another experimental procedure to measure it, distinct from the geometrical
method described above, is to induce the swinging motion of the droplet on a still fibre and
directly observe the period of oscillations. When perturbing the droplet using a mechanical
impulse or blowing on it on a still fibre we, however, did not manage to induce significant
oscillations without detaching the droplet. Instead, we oscillated the fibre for the droplet to
naturally swing, and suddenly stopped the oscillations. The measured oscillation frequency
is in this case 21 Hz, which is different than the previous estimate fp = 15 Hz. This would
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predict a swinging motion with a tongue of instability centred around 21 Hz, which might
be considered to be in better agreement with our experimental results but still does not
capture some of the experimental features, and in particular the fact that swinging cannot
be observed above 45 Hz. With this method, however, the droplet is both swinging and
vibrating in a pumping mode, and we cannot exclude an effect of the vibrations on the
swinging itself. This is in fact always true and hints at the fact that the droplet pumping
mode of response should be considered to explain the swinging region in the phase
diagram shown in figure 7.

5.3. Analogy with a forced elastic pendulum
To account for the vibrations of the droplet itself, in addition to the possibility of swinging,
we add in the analogy discussed above a linear spring (figure 8c). This spring allows for
a modulation of the pendulum length, analogous to the pumping mode of vibration of
the droplet that stretches and flattens it, and its spring constant k plays the role of the
surface tension coefficient. This is a first-order model for the effect of surface tension and
cannot capture all the features of droplet vibrations, but we use this minimal toy model to
gain insights into the coupling between the swinging and pumping modes of vibrations.
In Appendix B we show that, for small angles φ, the dynamics of an elastic pendulum is
governed by the following:

�(t) = −LeqΩ
2

(1 − (ω/ωs)2)2 + 4c2
s (ω/ωs)2 [Γ (1 − (ω/ωs)

2) cos(ωt) + 2cs(ω/ωs) sin(ωt)],

(5.2a)

φ′′(t) + 2
(

cpωp + �′(t)
Leq + �(t)

)
φ′(t) + ω2

p
1 − Γ cos(ωt)
1 + �(t)/Leq

φ(t) = 0, (5.2b)

with a one-way coupling between the vibrations characterized by the extension �(t) and
the swinging characterized by the angle φ(t) (see figure 8c). Here, ωs = (k/m)1/2 is the
natural frequency of the spring and cs is a damping coefficient introduced to model viscous
dissipation. We define Ω = ωp/ωs, the ratio between the natural pendulum frequency of
the droplet to its natural frequency of vibrations. For a droplet, we expect ωs ∼ (σ/ρr3)1/2

and ωp ∼ (g/r)1/2 with r ∼ V1/3 a characteristic size of the droplet, so that Ω ∼ Bo1/2

with Bo = ρgr2/σ the Bond number that compares gravitational and capillary effects.
When �(t)/Leq remains small, (5.2) simplifies to the damped Mathieu equation (5.1)

and the analysis discussed previously in § 5.2 applies. However, when �(t)/Leq can vary
significantly, the coefficients in (5.2) remain periodic but depend on the evolution of �(t).
This regime of significant variation of the pendulum length is expected to be relevant close
to the resonance frequency of the spring. We can then anticipate a possible effect on the
instability diagram when the main unstable frequency of the pendulum 2ωp is close to the
resonance frequency of the spring ωs, i.e. for Ω ≈ 1/2.

We have discussed experimental measurements of ωp in § 5.2, yielding ωp ≈ 15–22 Hz.
In § 2 we discussed the natural frequency of the first pumping mode of the droplet:
fpump � 57 Hz. Taking ωs ≈ ωpump, this gives a ratio Ω ≈ 0.26–0.37. We fix the values
of cp = cs = 0.15 arbitrarily and compute numerically the linear stability diagrams of
the equilibrium position φ = 0 in the (ω/ωp − Γ ) plane for chosen values of Ω . We
explain in Appendix B how we have obtained these stability diagrams, and the results
are shown in figure 8 for Ω ranging from 0.2 to 0.5. As expected, for Ω = 0.2 there is
little influence of the spring on the stability of the swinging motion. As Ω gets closer to
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0.5, however, the modulation of the pendulum length due to the spring makes the position
φ = 0 more easily unstable and lowers the main tongue of instability down to Γ = 0,
despite the presence of damping. Interestingly, the high-frequency limit of the instability
band near ω = 2ωp becomes very steep: this feature is also observed in our experimental
phase diagram shown in figure 7 where the swinging motion is observed for all amplitudes
at f = 45 Hz, but is never reached at 47 Hz and above. This band is also not necessarily
centred near ω = 2ωp but is shifted to higher values of ω for Ω < 0.5; this is consistent
with the apparent underestimation of ωp from geometric considerations.

The damping coefficients we have chosen are arbitrary. We let cs = cp = c and are
limited to large values such that cs � Ω2/2 ≈ 0.15, otherwise (5.2) would yield a
non-physical negative pendulum length. We show (see Appendix B, figure 13) that there
are no qualitative differences in the instability diagrams when varying c in the range
0.15 ≤ c ≤ 0.3, and in particular all the features discussed above still hold. A simple way
to measure experimentally the coefficient cs is to submit a droplet to a step acceleration
and to fit the obtained data to the exponentially decaying motion expected for a harmonic
oscillator. We estimate cs ≈ 0.01, which is too small to model with (5.2). A more realistic
droplet model would involve a nonlinear spring showing stiffening as it elongates and
allowing for smaller damping coefficients; a Duffing oscillator indeed models well a
forced droplet (Deepu, Chowdhuri & Basu 2014). However, doing so requires additional
parameters and the added nonlinearity would greatly complicate the analysis of the system.

6. Discussion

In this article we have described the behaviour of water droplets deposited on small titled
fibres that undergo sinusoidal oscillations. For a given frequency of oscillations, the higher
the amplitude is, the faster the droplet slides down the fibre (figure 2). The relation between
the amplitude of oscillations and the droplet’s sliding speed is typically linear, i.e. χ = 1
in (1.1), even though both sublinear and superlinear behaviours can also be observed.
Most of our observations are droplets which present a harmonic pumping motion, which
periodically flattens and stretches the droplet, modulating its wetted area (figure 3a).
However, it is not the viscous stresses distributed over the wetted area that control the
droplet’s motion, but rather the capillary forces at the contact line. Prior work on vibrating
flat substrates by Brunet et al. (2007) and Costalonga & Brunet (2020) successfully linked
the droplet’s speed to the distribution of contact angle along the contact line using the
unbalanced Young’s law. This is challenging to do see here given that the fibre geometry
makes it difficult to measure accurately the contact angles.

Besides harmonic pumping, we observed three other possible responses of the droplet.
At a fixed frequency this is associated with transitions between the different regimes
upon increasing the amplitude of oscillations: (i) from harmonic pumping to subharmonic
pumping for f ≈ 90 Hz (figure 4); (ii) from harmonic pumping to a combination of
harmonic pumping and rocking for f ≥ 120 Hz (figure 5); (iii) from harmonic pumping
to subharmonic swinging for f = 30 Hz (figure 6); and (iv) from subharmonic swinging
to harmonic pumping for f = 45 Hz. All of these transitions greatly increase the droplet’s
sliding speed (figure 2).

The first two regimes are not unexpected. The combination between rocking and
pumping modes is ubiquitous for droplets on flat substrates and is one of the main
observed drivers of directional motion. Subharmonic responses are also ubiquitous in free
surface flows and have been observed as well for drops on vibrating planes. The other two
transitions associated with a swinging motion are due to the specific geometry of a droplet
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hanging down a fibre. We rationalized this swinging motion by developing a simple model
with only two degrees of freedom: a mass attached by a linear spring to an oscillating base.
In this elastic pendulum analogy, the spring is a simple model for the modulation of the
droplet’s height that is resisted by surface tension. This yields a modified Mathieu equation
able to explain why a droplet pumping vertically below the fibre is unstable and starts to
swing. Despite being a minimal model, this explains why the swinging motion appears,
why there is a narrow range of frequencies where the swinging motion is excited even at
very low amplitude of oscillations and why there is a sharp cutoff frequency after which
swinging is never observed even at high amplitudes. However, it is limited to droplets on
horizontal fibres, which do not show exactly the same features as droplets on tilted fibres
that in addition slide. In particular, we do not explain the fourth transition discussed above,
where the swinging motion is suppressed upon increasing the amplitude of oscillations at
45 Hz. More generally, and similarly to studies on flat substrates, it remains challenging
to link the droplet’s mode of response to its sliding speed. Detailed characterization of the
response of drops on horizontal oscillating fibres, similar to the extensive body of literature
on drops on flat horizontal substrates (e.g. Bostwick & Steen 2014; Chang et al. 2015),
would be very interesting in order to understand fully the changes induced by the fibre
geometry alone. While we do not understand quantitatively the effect of the fibre diameter,
droplets show a regime transition (e.g. harmonic to subharmonic) at lower accelerations
on smaller fibres. They also slide faster, and require relatively small accelerations to reach
high sliding speeds as compared with droplets on flat substrates (e.g. Sartori et al. 2019).

Vibrations of drops on fibres have been reported both in the context of aerosol filtration
(Dawar et al. 2006; Dawar & Chase 2008) and fog harvesting (Zhang et al. 2018), where
they were observed to trigger or enhance motion. Wind is in fact present in many situations
involving drops and fibres and can induce structural oscillations; we demonstrated here
the impact this can have on the transport of droplets on fibres. In applications such as
digital microfluidics, oscillations can be controlled to induce motion and precisely vary
the droplet speed. In addition to the shape and surface properties of the fibre, structural
oscillations therefore have the potential to be a design parameter to control the behaviour
of drops.

Supplementary movies. The supplementary movies show the different modes of droplet vibrations.
Supplementary movies are available at https://doi.org/10.1017/jfm.2023.462.
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Appendix A. Additional data

Additional data are presented for the speed 〈U〉 of the droplet as a function of the amplitude
of oscillations, keeping the volume V = 4 μl unchanged. First, for b = 200 μm and f =
30, 45, 60 and 90 Hz, we have decreased the tilt angle α from 27.5◦ down to 15.3◦ and 7.5◦
(figures 9 and 11a). For the same frequencies and α = 27.5◦ we also have increased the
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Figure 9. Effect of the angle α = 27.5, 15.3 and 7.5◦ on the sliding speed 〈U〉 as a function of the normalized
acceleration. Here, V = 4 μl, b = 200 μm. (a,b) f = 30 and 45 Hz, respectively. Filled symbols represent
harmonic pumping, open symbols represent subharmonic swinging at f /2; (c) f = 60 Hz. Filled symbols
represent harmonic pumping, (d) f = 90 Hz. Filled symbols represent harmonic pumping, open symbols
represent subharmonic pumping at f /2.

fibre diameter up to b = 400 and 600 μm (figures 10 and 11b). In all these cases this leads
to droplets being pinned on the fibre without oscillations: U0 = 0. Finally, for f = 60 Hz,
α = 27.5◦ and b = 200 μm, we have varied the viscosity from μ = 1 to 2 and 5 mPa · s
while keeping other relevant properties nearly constant (figure 11c–e). We did so using
solutions of deionized water with 27 % and 50 % weight ratio of glycerol.

A.1. Link between speed and basal diameter
In § 3 and figure 3 we show that representing the sliding speed 〈U〉 as a function
of the averaged basal diameter 〈d〉 collapses data obtained at different frequencies for
droplets that respond with a pumping motion. To investigate this correlation, we recall
that the forces applied to a droplet and projected along the fibre are: the gravitational
force Fg = (4π/3)ρgr3 sin α, the viscous drag force Fv ∼ dμU and the capillary force
Fc ∼ σb. We choose to represent the dimensionless mean sliding speed 〈U〉/ρgr2 sin(α)

as a function of the dimensionless basal diameter 〈d〉/b; these dimensionless quantities
are obtained by balancing viscosity and gravity. Figure 11(a) shows that this allows us
to collapse the data obtained at different inclination angles α, which confirms that the
driving force of the sliding motion is gravity. Figure 11(d,e) shows data obtained with
different viscosities: the raw data of the speed 〈U〉 as a function of the diameter 〈d〉
collapse much better than in dimensionless form. This suggests that viscous drag is not
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Figure 10. Effect of the fibre diameter b = 200, 400 and 600 μm on the sliding speed 〈U〉 as a function of the
normalized acceleration. Here, V = 4 μl, α = 27.5◦; (a–c) f = 30, 45 and 60 Hz, respectively. Filled symbols
represent harmonic pumping, open symbols represent subharmonic swinging at f /2; (d) f = 90 Hz. Filled
symbols represent a harmonic (harm) motion, open symbols represent subharmonic (sub) pumping at f /2.

the main resisting force of the sliding motion, but rather that capillary forces are. In
the case of a flat surface, this capillary force simplifies to a relation only involving the
front and back contact angle of a droplet: Brunet et al. (2007) and Costalonga & Brunet
(2020) successfully correlated this unbalanced Young’s force to the droplet motion. We
cannot do so here given the complexity of the geometry and our inability to obtain an
accurate estimate of the distribution of the dynamic contact angles. To understand more
precisely this correlation between 〈U〉 and 〈d〉, a better understanding of the droplet
instantaneous geometry and contact angle distribution is needed. This is more challenging
to achieve on fibres than on flat substrates, and in particular we have not been able
to find a simple scaling that collapses the data obtained for different fibre diameters
(figure 11b).

A.2. Regimes of vibrations
Figures 9–11(c) show similar transitions between regimes of droplet vibrations as those
discussed in § 4. We also note that the data for the largest fibre diameter b = 600 μm show
that the pumping mode is excited at higher frequencies than for smaller diameters. This
is consistent with our geometric interpretation of this swinging mode discussed in § 5:
droplets of the same volume extend less below a thick fibre than below a thin fibre, so that
their natural pendulum frequency ω = (g/Leq)

1/2 is expected to be larger.
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Figure 11. (a,b) Normalized sliding speed as a function of the averaged basal diameter with f = 60 Hz and
for (a) different angles with b = 200 μm and (b) different fibre radii with α = 27.5◦. (c–e) Sliding speed for
solutions of water and glycerol of different viscosities with b = 200 μm, α = 27.5◦ and f = 60 Hz.
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Figure 12. Illustration of the two types of harmonic motion observed with the largest fibre with diameter
b = 600 μm with α = 27.5◦, V = 4 μl and f = 90 Hz. (a) At Γ = 8.7 we observe harmonic pumping with
a sliding speed 〈U〉 = 17 m s−1, while (b) at Γ = 14.4 the fibre moves through the droplet which then only
slides at a speed of 0.4 m s−1. See supplementary movies 9 and 10 available in the supplementary material.
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Figure 13. Linear stability diagrams for (left column) a simple pendulum modelled by (B5) ((5.1) in the main
text) or an elastic pendulum modelled by (B4b) and (B6) ((5.2) in the main text) with (middle column) Ω = 0.4
and (right column) Ω = 0.5. Different rows show different damping coefficients c = cp = cs going from (top
row) c = 0.15 and up to 0.2, 0.25 and (bottom row) c = 0.3. Shaded areas represent regions where the position
φ = 0 is linearly unstable.

We also have observed an additional vibration mode for droplet on the largest fibre at
high frequency and amplitude of oscillations. This is illustrated in figure 12. This mode of
vibrations corresponds to a droplet that does not sag on the fibre, instead the fibre seems
to go back and forth through the droplet. These data, shown figure 3(d), with a very small
sliding speed at high amplitude correspond to this mode of vibration; indeed it seems to
drastically impair the mobility of the droplet.

Appendix B. Governing equations of an elastic pendulum

We consider a pendulum in a two-dimensional plane consisting of a point mass m attached
to a support by a linear spring of constant k and length L = L0 + r, with L0 the length
of the spring at rest and r its extension, see figure 8(c). The pendulum makes an angle φ
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with respect to the vertical; it is placed in a gravitational field g and its support oscillates
vertically as A cos(ωt). We let Γ = Aω2/g the normalized maximal acceleration due to
these oscillations. The dynamics of the system is governed by the following nonlinear
system of ordinary differential equations (Nayfeh & Mook 2008):

r′′ + 2α1r′ + k
m

r − Lφ′2 = g(1 − Γ cos ωt) cos φ, (B1a)

φ′′ + 2α2φ
′ + g

L
(1 − Γ cos ωt) sin φ + 2

L
r′φ′ = 0. (B1b)

Here, (·)′ represent the derivative with respect to the time t, α1 and α2 are two
positive coefficients modelling linear damping. At φ = 0 and without forcing (Γ = 0)
the pendulum has an equilibrium length Leq = L0 + gm/k, and we let � = L0 + r − Leq
the extension with respect to Leq. We also introduce the following variables in order to
make (B1) dimensionless:

ωs =
(

k
m

)1/2

, ωp =
(

g
Leq

)1/2

, Ω = ωp

ωs
, η = ω

ωp
,

cs = αs

ωs
, cp = αp

ωp
, R = �

Leq
, τ = ωt,

⎫⎪⎪⎬
⎪⎪⎭

(B2)

with ωs and ωp the natural frequencies of oscillations of the spring and of the pendulum,
respectively. We use ˙(·) to denote derivatives with respect to the dimensionless time τ , so
that the dimensionless version of (B1) is

R̈ + 2
cs

ηΩ
Ṙ + 1

η2Ω2 R − (1 + R)φ̇2 = − 1
η2 (1 − cos φ + Γ cos τ), (B3a)

φ̈ + 2
(

cp

η
+ Ṙ

1 + R

)
φ̇ + 1

η2
1 − Γ cos τ

1 + R
sin φ = 0. (B3b)

This system is governed by five dimensionless parameters: Ω , η, Γ , cs and cp. We now
assume small angles φ = O(ε) with |ε| � 1. Neglecting terms of order ε2 and higher,
(B3) simplifies to

R̈ + 2
cs

ηΩ
Ṙ + 1

η2Ω2 R = − Γ

η2 cos τ, (B4a)

φ̈ + 2
(

cp

η
+ Ṙ

1 + R

)
φ̇ + 1

η2
1 − Γ cos τ

1 + R
φ = 0. (B4b)

Under this limit of small angles, (B4) exhibits one-way coupling: the pendulum mode
governed by φ depends on the spring mode governed by R, but R is independent of φ.

We first assume small oscillations of the spring with R = O(ε). The equation for the
pendulum (B4b) is then independent of R at O(ε) and is given by the following damped
Mathieu equation:

φ̈ + 2
cp

η
φ̇ + 1

η2 (1 − Γ cos τ)φ = 0. (B5)

The dimensional version of (B5) is (5.1), discussed in § 5.2.
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Assuming now R = O(1), the variations of R cannot be neglected. The solution of
(B4a) consists of a transient regime that exponentially decays and that we neglect, and
of harmonic oscillations given by

R(τ ) = −Ω2

(1 − η2Ω2)2 + 4c2
s η

2Ω2 [Γ (1 − η2Ω2) cos τ + 2csηΩ sin τ ], (B6)

while φ is still governed by (B4b). The dimensional version of this system is (5.2)
discussed in § 5.3.

The linear stability diagrams of the position φ = 0 of (B4), or (5.1) and (5.2) in § 5,
are shown in figure 8(d) with cp = cs = 0.15. Additional diagrams for larger damping
coefficients are shown in figure 13. They are obtained using Floquet theory, the theory
of linear ordinary differential equations with time-periodic coefficients, combined with
numerical integration (Cesari 1971; Kovacic et al. 2018).
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